![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ncfintfin | GIF version |
Description: Relationship between finite T operator and finite Nc operation in a finite universe. Corollary of Theorem X.1.31 of [Rosser] p. 529. (Contributed by SF, 24-Jan-2015.) |
Ref | Expression |
---|---|
ncfintfin | ⊢ ((V ∈ Fin ∧ A ∈ V) → Tfin Ncfin A = Ncfin ℘1A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ncfinprop 4474 | . . . 4 ⊢ ((V ∈ Fin ∧ A ∈ V) → ( Ncfin A ∈ Nn ∧ A ∈ Ncfin A)) | |
2 | 1 | simpld 445 | . . 3 ⊢ ((V ∈ Fin ∧ A ∈ V) → Ncfin A ∈ Nn ) |
3 | tfincl 4492 | . . 3 ⊢ ( Ncfin A ∈ Nn → Tfin Ncfin A ∈ Nn ) | |
4 | 2, 3 | syl 15 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → Tfin Ncfin A ∈ Nn ) |
5 | pw1exg 4302 | . . . 4 ⊢ (A ∈ V → ℘1A ∈ V) | |
6 | ncfinprop 4474 | . . . 4 ⊢ ((V ∈ Fin ∧ ℘1A ∈ V) → ( Ncfin ℘1A ∈ Nn ∧ ℘1A ∈ Ncfin ℘1A)) | |
7 | 5, 6 | sylan2 460 | . . 3 ⊢ ((V ∈ Fin ∧ A ∈ V) → ( Ncfin ℘1A ∈ Nn ∧ ℘1A ∈ Ncfin ℘1A)) |
8 | 7 | simpld 445 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → Ncfin ℘1A ∈ Nn ) |
9 | tfinpw1 4494 | . . 3 ⊢ (( Ncfin A ∈ Nn ∧ A ∈ Ncfin A) → ℘1A ∈ Tfin Ncfin A) | |
10 | 1, 9 | syl 15 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → ℘1A ∈ Tfin Ncfin A) |
11 | 7 | simprd 449 | . 2 ⊢ ((V ∈ Fin ∧ A ∈ V) → ℘1A ∈ Ncfin ℘1A) |
12 | nnceleq 4430 | . 2 ⊢ ((( Tfin Ncfin A ∈ Nn ∧ Ncfin ℘1A ∈ Nn ) ∧ (℘1A ∈ Tfin Ncfin A ∧ ℘1A ∈ Ncfin ℘1A)) → Tfin Ncfin A = Ncfin ℘1A) | |
13 | 4, 8, 10, 11, 12 | syl22anc 1183 | 1 ⊢ ((V ∈ Fin ∧ A ∈ V) → Tfin Ncfin A = Ncfin ℘1A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ℘1cpw1 4135 Nn cnnc 4373 Fin cfin 4376 Ncfin cncfin 4434 Tfin ctfin 4435 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-ncfin 4442 df-tfin 4443 |
This theorem is referenced by: tncveqnc1fin 4544 |
Copyright terms: Public domain | W3C validator |