Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubeslem1 Structured version   Visualization version   GIF version

Theorem 3cubeslem1 39330
Description: Lemma for 3cubes 39336. (Contributed by Igor Ieskov, 22-Jan-2024.)
Hypothesis
Ref Expression
3cubeslem1.a (𝜑𝐴 ∈ ℚ)
Assertion
Ref Expression
3cubeslem1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))

Proof of Theorem 3cubeslem1
StepHypRef Expression
1 3cubeslem1.a . . . . 5 (𝜑𝐴 ∈ ℚ)
2 qre 12354 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
31, 2syl 17 . . . 4 (𝜑𝐴 ∈ ℝ)
4 0red 10644 . . . 4 (𝜑 → 0 ∈ ℝ)
53, 4lttri4d 10781 . . 3 (𝜑 → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
6 simpl 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
7 0red 10644 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ∈ ℝ)
8 peano2re 10813 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
98adantr 483 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (𝐴 + 1) ∈ ℝ)
109resqcld 13612 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ((𝐴 + 1)↑2) ∈ ℝ)
11 simpr 487 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < 0)
129sqge0d 13613 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 ≤ ((𝐴 + 1)↑2))
136, 7, 10, 11, 12ltletrd 10800 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2))
1413a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 < ((𝐴 + 1)↑2)))
153, 14mpand 693 . . . 4 (𝜑 → (𝐴 < 0 → 𝐴 < ((𝐴 + 1)↑2)))
16 0lt1 11162 . . . . . . . 8 0 < 1
1716a1i 11 . . . . . . 7 (𝐴 = 0 → 0 < 1)
18 id 22 . . . . . . 7 (𝐴 = 0 → 𝐴 = 0)
19 sq1 13559 . . . . . . . 8 (1↑2) = 1
2019a1i 11 . . . . . . 7 (𝐴 = 0 → (1↑2) = 1)
2117, 18, 203brtr4d 5098 . . . . . 6 (𝐴 = 0 → 𝐴 < (1↑2))
22 0cnd 10634 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
23 1cnd 10636 . . . . . . . . 9 (𝐴 = 0 → 1 ∈ ℂ)
2418oveq1d 7171 . . . . . . . . 9 (𝐴 = 0 → (𝐴 + 1) = (0 + 1))
2522, 23, 24comraddd 10854 . . . . . . . 8 (𝐴 = 0 → (𝐴 + 1) = (1 + 0))
26 1p0e1 11762 . . . . . . . 8 (1 + 0) = 1
2725, 26syl6eq 2872 . . . . . . 7 (𝐴 = 0 → (𝐴 + 1) = 1)
2827oveq1d 7171 . . . . . 6 (𝐴 = 0 → ((𝐴 + 1)↑2) = (1↑2))
2921, 28breqtrrd 5094 . . . . 5 (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2))
3029a1i 11 . . . 4 (𝜑 → (𝐴 = 0 → 𝐴 < ((𝐴 + 1)↑2)))
31 ax-1rid 10607 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
3231adantr 483 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) = 𝐴)
33 simpl 485 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
34 1red 10642 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 ∈ ℝ)
3533, 34readdcld 10670 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℝ)
36 simpr 487 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < 𝐴)
37 0red 10644 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ∈ ℝ)
38 ltle 10729 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3937, 33, 38syl2anc 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → 0 ≤ 𝐴))
4033ltp1d 11570 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < (𝐴 + 1))
4139, 40jctird 529 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < 𝐴 → (0 ≤ 𝐴𝐴 < (𝐴 + 1))))
4236, 41mpd 15 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ 𝐴𝐴 < (𝐴 + 1)))
4334, 35jca 514 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ))
44 0le1 11163 . . . . . . . . . . 11 0 ≤ 1
4544a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 1)
46 1e0p1 12141 . . . . . . . . . . 11 1 = (0 + 1)
4737, 33, 34, 36ltadd1dd 11251 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 + 1) < (𝐴 + 1))
4846, 47eqbrtrid 5101 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 1 < (𝐴 + 1))
4943, 45, 48jca32 518 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1))))
50 ltmul12a 11496 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < (𝐴 + 1))) ∧ ((1 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < (𝐴 + 1)))) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5133, 35, 42, 49, 50syl1111anc 837 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 · 1) < ((𝐴 + 1) · (𝐴 + 1)))
5232, 51eqbrtrrd 5090 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1) · (𝐴 + 1)))
5335recnd 10669 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 + 1) ∈ ℂ)
5453sqvald 13508 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1)))
5552, 54breqtrrd 5094 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2))
5655a1i 11 . . . . 5 (𝜑 → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
573, 56mpand 693 . . . 4 (𝜑 → (0 < 𝐴𝐴 < ((𝐴 + 1)↑2)))
5815, 30, 573jaod 1424 . . 3 (𝜑 → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → 𝐴 < ((𝐴 + 1)↑2)))
595, 58mpd 15 . 2 (𝜑𝐴 < ((𝐴 + 1)↑2))
603, 8syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
6160resqcld 13612 . . 3 (𝜑 → ((𝐴 + 1)↑2) ∈ ℝ)
623, 61posdifd 11227 . 2 (𝜑 → (𝐴 < ((𝐴 + 1)↑2) ↔ 0 < (((𝐴 + 1)↑2) − 𝐴)))
6359, 62mpbid 234 1 (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3o 1082   = wceq 1537  wcel 2114   class class class wbr 5066  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  2c2 11693  cq 12349  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-seq 13371  df-exp 13431
This theorem is referenced by:  3cubeslem2  39331
  Copyright terms: Public domain W3C validator