MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos1lem Structured version   Visualization version   GIF version

Theorem bpos1lem 25198
Description: Lemma for bpos1 25199. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
bpos1.1 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
bpos1.2 (𝑁 ∈ (ℤ𝑃) → 𝜑)
bpos1.3 𝑃 ∈ ℙ
bpos1.4 𝐴 ∈ ℕ0
bpos1.5 (𝐴 · 2) = 𝐵
bpos1.6 𝐴 < 𝑃
bpos1.7 (𝑃 < 𝐵𝑃 = 𝐵)
Assertion
Ref Expression
bpos1lem (𝑁 ∈ (ℤ𝐴) → 𝜑)
Distinct variable groups:   𝑁,𝑝   𝑃,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑝)   𝐵(𝑝)

Proof of Theorem bpos1lem
StepHypRef Expression
1 bpos1.3 . . . . . 6 𝑃 ∈ ℙ
2 prmnn 15582 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2ax-mp 5 . . . . 5 𝑃 ∈ ℕ
43nnzi 11585 . . . 4 𝑃 ∈ ℤ
5 eluzelz 11881 . . . 4 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
6 eluz 11885 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
74, 5, 6sylancr 698 . . 3 (𝑁 ∈ (ℤ𝐴) → (𝑁 ∈ (ℤ𝑃) ↔ 𝑃𝑁))
8 bpos1.2 . . 3 (𝑁 ∈ (ℤ𝑃) → 𝜑)
97, 8syl6bir 244 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝜑))
103nnrei 11213 . . . . . . . 8 𝑃 ∈ ℝ
1110a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃 ∈ ℝ)
12 bpos1.5 . . . . . . . . 9 (𝐴 · 2) = 𝐵
13 bpos1.4 . . . . . . . . . . 11 𝐴 ∈ ℕ0
1413nn0rei 11487 . . . . . . . . . 10 𝐴 ∈ ℝ
15 2re 11274 . . . . . . . . . 10 2 ∈ ℝ
1614, 15remulcli 10238 . . . . . . . . 9 (𝐴 · 2) ∈ ℝ
1712, 16eqeltrri 2828 . . . . . . . 8 𝐵 ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
19 eluzelre 11882 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
20 remulcl 10205 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
2115, 19, 20sylancr 698 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → (2 · 𝑁) ∈ ℝ)
22 bpos1.7 . . . . . . . . 9 (𝑃 < 𝐵𝑃 = 𝐵)
2310, 17leloei 10338 . . . . . . . . 9 (𝑃𝐵 ↔ (𝑃 < 𝐵𝑃 = 𝐵))
2422, 23mpbir 221 . . . . . . . 8 𝑃𝐵
2524a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑃𝐵)
2613nn0cni 11488 . . . . . . . . 9 𝐴 ∈ ℂ
27 2cn 11275 . . . . . . . . 9 2 ∈ ℂ
2826, 27, 12mulcomli 10231 . . . . . . . 8 (2 · 𝐴) = 𝐵
29 eluzle 11884 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → 𝐴𝑁)
30 2pos 11296 . . . . . . . . . . . 12 0 < 2
3115, 30pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
32 lemul2 11060 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3314, 31, 32mp3an13 1556 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3419, 33syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ𝐴) → (𝐴𝑁 ↔ (2 · 𝐴) ≤ (2 · 𝑁)))
3529, 34mpbid 222 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → (2 · 𝐴) ≤ (2 · 𝑁))
3628, 35syl5eqbrr 4832 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝐵 ≤ (2 · 𝑁))
3711, 18, 21, 25, 36letrd 10378 . . . . . 6 (𝑁 ∈ (ℤ𝐴) → 𝑃 ≤ (2 · 𝑁))
3837anim2i 594 . . . . 5 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁)))
39 breq2 4800 . . . . . . 7 (𝑝 = 𝑃 → (𝑁 < 𝑝𝑁 < 𝑃))
40 breq1 4799 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑃 ≤ (2 · 𝑁)))
4139, 40anbi12d 749 . . . . . 6 (𝑝 = 𝑃 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))))
4241rspcev 3441 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 < 𝑃𝑃 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
431, 38, 42sylancr 698 . . . 4 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
44 bpos1.1 . . . 4 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) → 𝜑)
4543, 44syl 17 . . 3 ((𝑁 < 𝑃𝑁 ∈ (ℤ𝐴)) → 𝜑)
4645expcom 450 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑁 < 𝑃𝜑))
47 lelttric 10328 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃𝑁𝑁 < 𝑃))
4810, 19, 47sylancr 698 . 2 (𝑁 ∈ (ℤ𝐴) → (𝑃𝑁𝑁 < 𝑃))
499, 46, 48mpjaod 395 1 (𝑁 ∈ (ℤ𝐴) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1624  wcel 2131  wrex 3043   class class class wbr 4796  cfv 6041  (class class class)co 6805  cr 10119  0cc0 10120   · cmul 10125   < clt 10258  cle 10259  cn 11204  2c2 11254  0cn0 11476  cz 11561  cuz 11871  cprime 15579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-z 11562  df-uz 11872  df-prm 15580
This theorem is referenced by:  bpos1  25199
  Copyright terms: Public domain W3C validator