MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcfuccl Structured version   Visualization version   GIF version

Theorem catcfuccl 17371
Description: The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcfuccl.c 𝐶 = (CatCat‘𝑈)
catcfuccl.b 𝐵 = (Base‘𝐶)
catcfuccl.o 𝑄 = (𝑋 FuncCat 𝑌)
catcfuccl.u (𝜑𝑈 ∈ WUni)
catcfuccl.1 (𝜑 → ω ∈ 𝑈)
catcfuccl.x (𝜑𝑋𝐵)
catcfuccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcfuccl (𝜑𝑄𝐵)

Proof of Theorem catcfuccl
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcfuccl.o . . . . 5 𝑄 = (𝑋 FuncCat 𝑌)
2 eqid 2823 . . . . 5 (𝑋 Func 𝑌) = (𝑋 Func 𝑌)
3 eqid 2823 . . . . 5 (𝑋 Nat 𝑌) = (𝑋 Nat 𝑌)
4 eqid 2823 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2823 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
6 catcfuccl.x . . . . . . 7 (𝜑𝑋𝐵)
7 catcfuccl.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
8 catcfuccl.b . . . . . . . 8 𝐵 = (Base‘𝐶)
9 catcfuccl.u . . . . . . . 8 (𝜑𝑈 ∈ WUni)
107, 8, 9catcbas 17359 . . . . . . 7 (𝜑𝐵 = (𝑈 ∩ Cat))
116, 10eleqtrd 2917 . . . . . 6 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
1211elin2d 4178 . . . . 5 (𝜑𝑋 ∈ Cat)
13 catcfuccl.y . . . . . . 7 (𝜑𝑌𝐵)
1413, 10eleqtrd 2917 . . . . . 6 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
1514elin2d 4178 . . . . 5 (𝜑𝑌 ∈ Cat)
16 eqidd 2824 . . . . 5 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))))
171, 2, 3, 4, 5, 12, 15, 16fucval 17230 . . . 4 (𝜑𝑄 = {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩})
18 df-base 16491 . . . . . . 7 Base = Slot 1
19 catcfuccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
209, 19wunndx 16506 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 9, 20wunstr 16509 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
2211elin1d 4177 . . . . . . 7 (𝜑𝑋𝑈)
2314elin1d 4177 . . . . . . 7 (𝜑𝑌𝑈)
249, 22, 23wunfunc 17171 . . . . . 6 (𝜑 → (𝑋 Func 𝑌) ∈ 𝑈)
259, 21, 24wunop 10146 . . . . 5 (𝜑 → ⟨(Base‘ndx), (𝑋 Func 𝑌)⟩ ∈ 𝑈)
26 df-hom 16591 . . . . . . 7 Hom = Slot 14
2726, 9, 20wunstr 16509 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
289, 22, 23wunnat 17228 . . . . . 6 (𝜑 → (𝑋 Nat 𝑌) ∈ 𝑈)
299, 27, 28wunop 10146 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩ ∈ 𝑈)
30 df-cco 16592 . . . . . . 7 comp = Slot 15
3130, 9, 20wunstr 16509 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
329, 24, 24wunxp 10148 . . . . . . . 8 (𝜑 → ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) ∈ 𝑈)
339, 32, 24wunxp 10148 . . . . . . 7 (𝜑 → (((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌)) ∈ 𝑈)
3430, 9, 23wunstr 16509 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
359, 34wunrn 10153 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
369, 35wununi 10130 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
379, 36wunrn 10153 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
389, 37wununi 10130 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
399, 38wunpw 10131 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
4018, 9, 22wunstr 16509 . . . . . . . . 9 (𝜑 → (Base‘𝑋) ∈ 𝑈)
419, 39, 40wunmap 10150 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ 𝑈)
429, 28wunrn 10153 . . . . . . . . . 10 (𝜑 → ran (𝑋 Nat 𝑌) ∈ 𝑈)
439, 42wununi 10130 . . . . . . . . 9 (𝜑 ran (𝑋 Nat 𝑌) ∈ 𝑈)
449, 43, 43wunxp 10148 . . . . . . . 8 (𝜑 → ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ 𝑈)
459, 41, 44wunpm 10149 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ∈ 𝑈)
46 fvex 6685 . . . . . . . . . . 11 (1st𝑣) ∈ V
47 fvex 6685 . . . . . . . . . . . . . 14 (2nd𝑣) ∈ V
48 ovex 7191 . . . . . . . . . . . . . . . . 17 (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V
49 ovex 7191 . . . . . . . . . . . . . . . . . . . 20 (𝑋 Nat 𝑌) ∈ V
5049rnex 7619 . . . . . . . . . . . . . . . . . . 19 ran (𝑋 Nat 𝑌) ∈ V
5150uniex 7469 . . . . . . . . . . . . . . . . . 18 ran (𝑋 Nat 𝑌) ∈ V
5251, 51xpex 7478 . . . . . . . . . . . . . . . . 17 ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V
53 eqid 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))
54 ovssunirn 7194 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))
55 ovssunirn 7194 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌)
56 rnss 5811 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
57 uniss 4848 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌) → ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌))
5855, 56, 57mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥)) ⊆ ran ran (comp‘𝑌)
5954, 58sstri 3978 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌)
60 ovex 7191 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ V
6160elpw 4545 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ⊆ ran ran (comp‘𝑌))
6259, 61mpbir 233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (Base‘𝑋) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)) ∈ 𝒫 ran ran (comp‘𝑌))
6453, 63fmpti 6878 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌)
65 fvex 6685 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (comp‘𝑌) ∈ V
6665rnex 7619 . . . . . . . . . . . . . . . . . . . . . . . . 25 ran (comp‘𝑌) ∈ V
6766uniex 7469 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (comp‘𝑌) ∈ V
6867rnex 7619 . . . . . . . . . . . . . . . . . . . . . . 23 ran ran (comp‘𝑌) ∈ V
6968uniex 7469 . . . . . . . . . . . . . . . . . . . . . 22 ran ran (comp‘𝑌) ∈ V
7069pwex 5283 . . . . . . . . . . . . . . . . . . . . 21 𝒫 ran ran (comp‘𝑌) ∈ V
71 fvex 6685 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑋) ∈ V
7270, 71elmap 8437 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))):(Base‘𝑋)⟶𝒫 ran ran (comp‘𝑌))
7364, 72mpbir 233 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
7473rgen2w 3153 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
75 eqid 2823 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))
7675fmpo 7768 . . . . . . . . . . . . . . . . . 18 (∀𝑏 ∈ (𝑔(𝑋 Nat 𝑌))∀𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔)(𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))) ∈ (𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↔ (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)))
7774, 76mpbi 232 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋))
78 ovssunirn 7194 . . . . . . . . . . . . . . . . . 18 (𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌)
79 ovssunirn 7194 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)
80 xpss12 5572 . . . . . . . . . . . . . . . . . 18 (((𝑔(𝑋 Nat 𝑌)) ⊆ ran (𝑋 Nat 𝑌) ∧ (𝑓(𝑋 Nat 𝑌)𝑔) ⊆ ran (𝑋 Nat 𝑌)) → ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8178, 79, 80mp2an 690 . . . . . . . . . . . . . . . . 17 ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))
82 elpm2r 8426 . . . . . . . . . . . . . . . . 17 ((((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∈ V ∧ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)) ∈ V) ∧ ((𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))):((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔))⟶(𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ∧ ((𝑔(𝑋 Nat 𝑌)) × (𝑓(𝑋 Nat 𝑌)𝑔)) ⊆ ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))) → (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8348, 52, 77, 81, 82mp4an 691 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8483sbcth 3789 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → [(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
85 sbcel1g 4367 . . . . . . . . . . . . . . 15 ((2nd𝑣) ∈ V → ([(2nd𝑣) / 𝑔](𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
8684, 85mpbid 234 . . . . . . . . . . . . . 14 ((2nd𝑣) ∈ V → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
8747, 86ax-mp 5 . . . . . . . . . . . . 13 (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
8887sbcth 3789 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → [(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
89 sbcel1g 4367 . . . . . . . . . . . 12 ((1st𝑣) ∈ V → ([(1st𝑣) / 𝑓](2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))))
9088, 89mpbid 234 . . . . . . . . . . 11 ((1st𝑣) ∈ V → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9146, 90ax-mp 5 . . . . . . . . . 10 (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9291rgen2w 3153 . . . . . . . . 9 𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
93 eqid 2823 . . . . . . . . . 10 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))
9493fmpo 7768 . . . . . . . . 9 (∀𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌))∀ ∈ (𝑋 Func 𝑌)(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))) ∈ ((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))) ↔ (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
9592, 94mpbi 232 . . . . . . . 8 (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌)))
9695a1i 11 . . . . . . 7 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))):(((𝑋 Func 𝑌) × (𝑋 Func 𝑌)) × (𝑋 Func 𝑌))⟶((𝒫 ran ran (comp‘𝑌) ↑m (Base‘𝑋)) ↑pm ( ran (𝑋 Nat 𝑌) × ran (𝑋 Nat 𝑌))))
979, 33, 45, 96wunf 10151 . . . . . 6 (𝜑 → (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥))))) ∈ 𝑈)
989, 31, 97wunop 10146 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩ ∈ 𝑈)
999, 25, 29, 98wuntp 10135 . . . 4 (𝜑 → {⟨(Base‘ndx), (𝑋 Func 𝑌)⟩, ⟨(Hom ‘ndx), (𝑋 Nat 𝑌)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑋 Func 𝑌) × (𝑋 Func 𝑌)), ∈ (𝑋 Func 𝑌) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑋 Nat 𝑌)), 𝑎 ∈ (𝑓(𝑋 Nat 𝑌)𝑔) ↦ (𝑥 ∈ (Base‘𝑋) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑌)((1st)‘𝑥))(𝑎𝑥)))))⟩} ∈ 𝑈)
10017, 99eqeltrd 2915 . . 3 (𝜑𝑄𝑈)
1011, 12, 15fuccat 17242 . . 3 (𝜑𝑄 ∈ Cat)
102100, 101elind 4173 . 2 (𝜑𝑄 ∈ (𝑈 ∩ Cat))
103102, 10eleqtrrd 2918 1 (𝜑𝑄𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  [wsbc 3774  csb 3885  cin 3937  wss 3938  𝒫 cpw 4541  {ctp 4573  cop 4575   cuni 4840  cmpt 5148   × cxp 5555  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  ωcom 7582  1st c1st 7689  2nd c2nd 7690  m cmap 8408  pm cpm 8409  WUnicwun 10124  1c1 10540  4c4 11697  5c5 11698  cdc 12101  ndxcnx 16482  Basecbs 16485  Hom chom 16578  compcco 16579  Catccat 16937   Func cfunc 17126   Nat cnat 17213   FuncCat cfuc 17214  CatCatccatc 17356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-wun 10126  df-ni 10296  df-pli 10297  df-mi 10298  df-lti 10299  df-plpq 10332  df-mpq 10333  df-ltpq 10334  df-enq 10335  df-nq 10336  df-erq 10337  df-plq 10338  df-mq 10339  df-1nq 10340  df-rq 10341  df-ltnq 10342  df-np 10405  df-plp 10407  df-ltp 10409  df-enr 10479  df-nr 10480  df-c 10545  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-func 17130  df-nat 17215  df-fuc 17216  df-catc 17357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator