Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Structured version   Visualization version   GIF version

Theorem caucvgr 14356
 Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caucvgr (𝜑𝐹 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caucvgr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21feqmptd 6216 . . . 4 (𝜑𝐹 = (𝑛𝐴 ↦ (𝐹𝑛)))
31ffvelrnda 6325 . . . . . 6 ((𝜑𝑛𝐴) → (𝐹𝑛) ∈ ℂ)
43replimd 13887 . . . . 5 ((𝜑𝑛𝐴) → (𝐹𝑛) = ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛)))))
54mpteq2dva 4714 . . . 4 (𝜑 → (𝑛𝐴 ↦ (𝐹𝑛)) = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
62, 5eqtrd 2655 . . 3 (𝜑𝐹 = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
7 fvexd 6170 . . . 4 ((𝜑𝑛𝐴) → (ℜ‘(𝐹𝑛)) ∈ V)
8 ovexd 6645 . . . 4 ((𝜑𝑛𝐴) → (i · (ℑ‘(𝐹𝑛))) ∈ V)
9 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
10 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
11 caucvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
12 ref 13802 . . . . 5 ℜ:ℂ⟶ℝ
13 resub 13817 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℜ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗))))
1413fveq2d 6162 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))))
15 subcl 10240 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
16 absrele 13998 . . . . . . 7 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1715, 16syl 17 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1814, 17eqbrtrrd 4647 . . . . 5 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
199, 1, 10, 11, 12, 18caucvgrlem2 14355 . . . 4 (𝜑 → (𝑛𝐴 ↦ (ℜ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹)))
20 ax-icn 9955 . . . . . . 7 i ∈ ℂ
2120elexi 3203 . . . . . 6 i ∈ V
2221a1i 11 . . . . 5 ((𝜑𝑛𝐴) → i ∈ V)
23 fvexd 6170 . . . . 5 ((𝜑𝑛𝐴) → (ℑ‘(𝐹𝑛)) ∈ V)
24 rlimconst 14225 . . . . . 6 ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛𝐴 ↦ i) ⇝𝑟 i)
259, 20, 24sylancl 693 . . . . 5 (𝜑 → (𝑛𝐴 ↦ i) ⇝𝑟 i)
26 imf 13803 . . . . . 6 ℑ:ℂ⟶ℝ
27 imsub 13825 . . . . . . . 8 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℑ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗))))
2827fveq2d 6162 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))))
29 absimle 13999 . . . . . . . 8 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3015, 29syl 17 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3128, 30eqbrtrrd 4647 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
329, 1, 10, 11, 26, 31caucvgrlem2 14355 . . . . 5 (𝜑 → (𝑛𝐴 ↦ (ℑ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))
3322, 23, 25, 32rlimmul 14325 . . . 4 (𝜑 → (𝑛𝐴 ↦ (i · (ℑ‘(𝐹𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))
347, 8, 19, 33rlimadd 14323 . . 3 (𝜑 → (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
356, 34eqbrtrd 4645 . 2 (𝜑𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
36 rlimrel 14174 . . 3 Rel ⇝𝑟
3736releldmi 5332 . 2 (𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 )
3835, 37syl 17 1 (𝜑𝐹 ∈ dom ⇝𝑟 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2908  ∃wrex 2909  Vcvv 3190   ⊆ wss 3560   class class class wbr 4623   ↦ cmpt 4683  dom cdm 5084   ∘ ccom 5088  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615  supcsup 8306  ℂcc 9894  ℝcr 9895  ici 9898   + caddc 9899   · cmul 9901  +∞cpnf 10031  ℝ*cxr 10033   < clt 10034   ≤ cle 10035   − cmin 10226  ℝ+crp 11792  ℜcre 13787  ℑcim 13788  abscabs 13924   ⇝𝑟 crli 14166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-ico 12139  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-rlim 14170 This theorem is referenced by:  caucvg  14359  dvfsumrlim  23732
 Copyright terms: Public domain W3C validator