MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Structured version   Visualization version   GIF version

Theorem caucvgr 15032
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caucvgr (𝜑𝐹 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caucvgr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21feqmptd 6733 . . . 4 (𝜑𝐹 = (𝑛𝐴 ↦ (𝐹𝑛)))
31ffvelrnda 6851 . . . . . 6 ((𝜑𝑛𝐴) → (𝐹𝑛) ∈ ℂ)
43replimd 14556 . . . . 5 ((𝜑𝑛𝐴) → (𝐹𝑛) = ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛)))))
54mpteq2dva 5161 . . . 4 (𝜑 → (𝑛𝐴 ↦ (𝐹𝑛)) = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
62, 5eqtrd 2856 . . 3 (𝜑𝐹 = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
7 fvexd 6685 . . . 4 ((𝜑𝑛𝐴) → (ℜ‘(𝐹𝑛)) ∈ V)
8 ovexd 7191 . . . 4 ((𝜑𝑛𝐴) → (i · (ℑ‘(𝐹𝑛))) ∈ V)
9 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
10 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
11 caucvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
12 ref 14471 . . . . 5 ℜ:ℂ⟶ℝ
13 resub 14486 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℜ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗))))
1413fveq2d 6674 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))))
15 subcl 10885 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
16 absrele 14668 . . . . . . 7 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1715, 16syl 17 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1814, 17eqbrtrrd 5090 . . . . 5 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
199, 1, 10, 11, 12, 18caucvgrlem2 15031 . . . 4 (𝜑 → (𝑛𝐴 ↦ (ℜ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹)))
20 ax-icn 10596 . . . . . . 7 i ∈ ℂ
2120elexi 3513 . . . . . 6 i ∈ V
2221a1i 11 . . . . 5 ((𝜑𝑛𝐴) → i ∈ V)
23 fvexd 6685 . . . . 5 ((𝜑𝑛𝐴) → (ℑ‘(𝐹𝑛)) ∈ V)
24 rlimconst 14901 . . . . . 6 ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛𝐴 ↦ i) ⇝𝑟 i)
259, 20, 24sylancl 588 . . . . 5 (𝜑 → (𝑛𝐴 ↦ i) ⇝𝑟 i)
26 imf 14472 . . . . . 6 ℑ:ℂ⟶ℝ
27 imsub 14494 . . . . . . . 8 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℑ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗))))
2827fveq2d 6674 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))))
29 absimle 14669 . . . . . . . 8 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3015, 29syl 17 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3128, 30eqbrtrrd 5090 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
329, 1, 10, 11, 26, 31caucvgrlem2 15031 . . . . 5 (𝜑 → (𝑛𝐴 ↦ (ℑ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))
3322, 23, 25, 32rlimmul 15001 . . . 4 (𝜑 → (𝑛𝐴 ↦ (i · (ℑ‘(𝐹𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))
347, 8, 19, 33rlimadd 14999 . . 3 (𝜑 → (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
356, 34eqbrtrd 5088 . 2 (𝜑𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
36 rlimrel 14850 . . 3 Rel ⇝𝑟
3736releldmi 5818 . 2 (𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 )
3835, 37syl 17 1 (𝜑𝐹 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  wss 3936   class class class wbr 5066  cmpt 5146  dom cdm 5555  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  supcsup 8904  cc 10535  cr 10536  ici 10539   + caddc 10540   · cmul 10542  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870  +crp 12390  cre 14456  cim 14457  abscabs 14593  𝑟 crli 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-rlim 14846
This theorem is referenced by:  caucvg  15035  dvfsumrlim  24628
  Copyright terms: Public domain W3C validator