Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjs Structured version   Visualization version   GIF version

Theorem cycpmconjs 30819
Description: All cycles of the same length are conjugate in the symmetric group. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjs.b 𝐵 = (Base‘𝑆)
cycpmconjs.a + = (+g𝑆)
cycpmconjs.l = (-g𝑆)
cycpmconjs.p (𝜑𝑃 ∈ (0...𝑁))
cycpmconjs.d (𝜑𝐷 ∈ Fin)
cycpmconjs.q (𝜑𝑄𝐶)
cycpmconjs.t (𝜑𝑇𝐶)
Assertion
Ref Expression
cycpmconjs (𝜑 → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
Distinct variable groups:   + ,𝑝   ,𝑝   𝐵,𝑝   𝐷,𝑝   𝑀,𝑝   𝑁,𝑝   𝑃,𝑝   𝑄,𝑝   𝑇,𝑝   𝜑,𝑝
Allowed substitution hints:   𝐶(𝑝)   𝑆(𝑝)

Proof of Theorem cycpmconjs
Dummy variables 𝑞 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmconjs.c . . 3 𝐶 = (𝑀 “ (♯ “ {𝑃}))
2 cycpmconjs.s . . 3 𝑆 = (SymGrp‘𝐷)
3 cycpmconjs.n . . 3 𝑁 = (♯‘𝐷)
4 cycpmconjs.m . . 3 𝑀 = (toCyc‘𝐷)
5 cycpmconjs.b . . 3 𝐵 = (Base‘𝑆)
6 cycpmconjs.a . . 3 + = (+g𝑆)
7 cycpmconjs.l . . 3 = (-g𝑆)
8 cycpmconjs.p . . 3 (𝜑𝑃 ∈ (0...𝑁))
9 cycpmconjs.d . . 3 (𝜑𝐷 ∈ Fin)
10 cycpmconjs.q . . 3 (𝜑𝑄𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cycpmconjslem2 30818 . 2 (𝜑 → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
12 cycpmconjs.t . . . . . 6 (𝜑𝑇𝐶)
131, 2, 3, 4, 5, 6, 7, 8, 9, 12cycpmconjslem2 30818 . . . . 5 (𝜑 → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
1413ad2antrr 724 . . . 4 (((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑡(𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))))
159ad4antr 730 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝐷 ∈ Fin)
16 simp-4r 782 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑞:(0..^𝑁)–1-1-onto𝐷)
17 f1ocnv 6624 . . . . . . . . 9 (𝑡:(0..^𝑁)–1-1-onto𝐷𝑡:𝐷1-1-onto→(0..^𝑁))
1817ad2antlr 725 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑡:𝐷1-1-onto→(0..^𝑁))
19 f1oco 6634 . . . . . . . 8 ((𝑞:(0..^𝑁)–1-1-onto𝐷𝑡:𝐷1-1-onto→(0..^𝑁)) → (𝑞𝑡):𝐷1-1-onto𝐷)
2016, 18, 19syl2anc 586 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑡):𝐷1-1-onto𝐷)
212, 5elsymgbas 18498 . . . . . . . 8 (𝐷 ∈ Fin → ((𝑞𝑡) ∈ 𝐵 ↔ (𝑞𝑡):𝐷1-1-onto𝐷))
2221biimpar 480 . . . . . . 7 ((𝐷 ∈ Fin ∧ (𝑞𝑡):𝐷1-1-onto𝐷) → (𝑞𝑡) ∈ 𝐵)
2315, 20, 22syl2anc 586 . . . . . 6 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑡) ∈ 𝐵)
24 simpr 487 . . . . . . . . 9 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → 𝑝 = (𝑞𝑡))
2524oveq1d 7168 . . . . . . . 8 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → (𝑝 + 𝑇) = ((𝑞𝑡) + 𝑇))
2625, 24oveq12d 7171 . . . . . . 7 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → ((𝑝 + 𝑇) 𝑝) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
2726eqeq2d 2831 . . . . . 6 ((((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑝 = (𝑞𝑡)) → (𝑄 = ((𝑝 + 𝑇) 𝑝) ↔ 𝑄 = (((𝑞𝑡) + 𝑇) (𝑞𝑡))))
28 simpllr 774 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))
29 simpr 487 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))
3028, 29eqtr4d 2858 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑄) ∘ 𝑞) = ((𝑡𝑇) ∘ 𝑡))
3130coeq1d 5729 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞) = (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞))
3231coeq2d 5730 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)))
33 coass 6115 . . . . . . . . 9 ((𝑞 ∘ (𝑞𝑄)) ∘ (𝑞𝑞)) = (𝑞 ∘ ((𝑞𝑄) ∘ (𝑞𝑞)))
34 coass 6115 . . . . . . . . . 10 ((𝑞𝑞) ∘ 𝑄) = (𝑞 ∘ (𝑞𝑄))
3534coeq1i 5727 . . . . . . . . 9 (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = ((𝑞 ∘ (𝑞𝑄)) ∘ (𝑞𝑞))
36 coass 6115 . . . . . . . . . 10 (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞) = ((𝑞𝑄) ∘ (𝑞𝑞))
3736coeq2i 5728 . . . . . . . . 9 (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (𝑞 ∘ ((𝑞𝑄) ∘ (𝑞𝑞)))
3833, 35, 373eqtr4ri 2854 . . . . . . . 8 (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞))
39 f1ococnv2 6638 . . . . . . . . . . . . 13 (𝑞:(0..^𝑁)–1-1-onto𝐷 → (𝑞𝑞) = ( I ↾ 𝐷))
4016, 39syl 17 . . . . . . . . . . . 12 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞𝑞) = ( I ↾ 𝐷))
4140coeq1d 5729 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑞) ∘ 𝑄) = (( I ↾ 𝐷) ∘ 𝑄))
421, 2, 3, 4, 5cycpmgcl 30816 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑃 ∈ (0...𝑁)) → 𝐶𝐵)
439, 8, 42syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
4443, 10sseldd 3965 . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
452, 5elsymgbas 18498 . . . . . . . . . . . . . . 15 (𝐷 ∈ Fin → (𝑄𝐵𝑄:𝐷1-1-onto𝐷))
4645biimpa 479 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑄𝐵) → 𝑄:𝐷1-1-onto𝐷)
479, 44, 46syl2anc 586 . . . . . . . . . . . . 13 (𝜑𝑄:𝐷1-1-onto𝐷)
48 f1of 6612 . . . . . . . . . . . . 13 (𝑄:𝐷1-1-onto𝐷𝑄:𝐷𝐷)
49 fcoi2 6550 . . . . . . . . . . . . 13 (𝑄:𝐷𝐷 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5047, 48, 493syl 18 . . . . . . . . . . . 12 (𝜑 → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5150ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (( I ↾ 𝐷) ∘ 𝑄) = 𝑄)
5241, 51eqtrd 2855 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑞) ∘ 𝑄) = 𝑄)
5352, 40coeq12d 5732 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = (𝑄 ∘ ( I ↾ 𝐷)))
54 fcoi1 6549 . . . . . . . . . . 11 (𝑄:𝐷𝐷 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5547, 48, 543syl 18 . . . . . . . . . 10 (𝜑 → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5655ad4antr 730 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑄 ∘ ( I ↾ 𝐷)) = 𝑄)
5753, 56eqtrd 2855 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑞) ∘ 𝑄) ∘ (𝑞𝑞)) = 𝑄)
5838, 57syl5eq 2867 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑞𝑄) ∘ 𝑞) ∘ 𝑞)) = 𝑄)
59 coass 6115 . . . . . . . . 9 ((𝑞 ∘ (𝑡𝑇)) ∘ (𝑡𝑞)) = (𝑞 ∘ ((𝑡𝑇) ∘ (𝑡𝑞)))
60 coass 6115 . . . . . . . . . 10 ((𝑞𝑡) ∘ 𝑇) = (𝑞 ∘ (𝑡𝑇))
6160coeq1i 5727 . . . . . . . . 9 (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = ((𝑞 ∘ (𝑡𝑇)) ∘ (𝑡𝑞))
62 coass 6115 . . . . . . . . . 10 (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞) = ((𝑡𝑇) ∘ (𝑡𝑞))
6362coeq2i 5728 . . . . . . . . 9 (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)) = (𝑞 ∘ ((𝑡𝑇) ∘ (𝑡𝑞)))
6459, 61, 633eqtr4i 2853 . . . . . . . 8 (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞))
6543, 12sseldd 3965 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
6665ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑇𝐵)
672, 5, 6symgov 18508 . . . . . . . . . . 11 (((𝑞𝑡) ∈ 𝐵𝑇𝐵) → ((𝑞𝑡) + 𝑇) = ((𝑞𝑡) ∘ 𝑇))
6823, 66, 67syl2anc 586 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) + 𝑇) = ((𝑞𝑡) ∘ 𝑇))
6968oveq1d 7168 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) + 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)))
702symggrp 18524 . . . . . . . . . . . . . 14 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
719, 70syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Grp)
7271ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑆 ∈ Grp)
735, 6grpcl 18107 . . . . . . . . . . . 12 ((𝑆 ∈ Grp ∧ (𝑞𝑡) ∈ 𝐵𝑇𝐵) → ((𝑞𝑡) + 𝑇) ∈ 𝐵)
7472, 23, 66, 73syl3anc 1366 . . . . . . . . . . 11 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) + 𝑇) ∈ 𝐵)
7568, 74eqeltrrd 2913 . . . . . . . . . 10 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ((𝑞𝑡) ∘ 𝑇) ∈ 𝐵)
762, 5, 7symgsubg 30752 . . . . . . . . . 10 ((((𝑞𝑡) ∘ 𝑇) ∈ 𝐵 ∧ (𝑞𝑡) ∈ 𝐵) → (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)))
7775, 23, 76syl2anc 586 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)))
78 cnvco 5753 . . . . . . . . . . . 12 (𝑞𝑡) = (𝑡𝑞)
79 f1orel 6615 . . . . . . . . . . . . . 14 (𝑡:(0..^𝑁)–1-1-onto𝐷 → Rel 𝑡)
80 dfrel2 6043 . . . . . . . . . . . . . 14 (Rel 𝑡𝑡 = 𝑡)
8179, 80sylib 220 . . . . . . . . . . . . 13 (𝑡:(0..^𝑁)–1-1-onto𝐷𝑡 = 𝑡)
8281coeq1d 5729 . . . . . . . . . . . 12 (𝑡:(0..^𝑁)–1-1-onto𝐷 → (𝑡𝑞) = (𝑡𝑞))
8378, 82syl5eq 2867 . . . . . . . . . . 11 (𝑡:(0..^𝑁)–1-1-onto𝐷(𝑞𝑡) = (𝑡𝑞))
8483coeq2d 5730 . . . . . . . . . 10 (𝑡:(0..^𝑁)–1-1-onto𝐷 → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)))
8584ad2antlr 725 . . . . . . . . 9 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑞𝑡)) = (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)))
8669, 77, 853eqtrrd 2860 . . . . . . . 8 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (((𝑞𝑡) ∘ 𝑇) ∘ (𝑡𝑞)) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8764, 86syl5eqr 2869 . . . . . . 7 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → (𝑞 ∘ (((𝑡𝑇) ∘ 𝑡) ∘ 𝑞)) = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8832, 58, 873eqtr3d 2863 . . . . . 6 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → 𝑄 = (((𝑞𝑡) + 𝑇) (𝑞𝑡)))
8923, 27, 88rspcedvd 3625 . . . . 5 (((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ 𝑡:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9089anasss 469 . . . 4 ((((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) ∧ (𝑡:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑡𝑇) ∘ 𝑡) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9114, 90exlimddv 1935 . . 3 (((𝜑𝑞:(0..^𝑁)–1-1-onto𝐷) ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁)))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9291anasss 469 . 2 ((𝜑 ∧ (𝑞:(0..^𝑁)–1-1-onto𝐷 ∧ ((𝑞𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
9311, 92exlimddv 1935 1 (𝜑 → ∃𝑝𝐵 𝑄 = ((𝑝 + 𝑇) 𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wex 1779  wcel 2113  wrex 3138  cun 3931  wss 3933  {csn 4564   I cid 5456  ccnv 5551  cres 5554  cima 5555  ccom 5556  Rel wrel 5557  wf 6348  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7153  Fincfn 8506  0cc0 10534  1c1 10535  ...cfz 12890  ..^cfzo 13031  chash 13688   cyclShift ccsh 14146  Basecbs 16479  +gcplusg 16561  Grpcgrp 18099  -gcsg 18101  SymGrpcsymg 18491  toCycctocyc 30769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611  ax-pre-sup 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-sup 8903  df-inf 8904  df-dju 9327  df-card 9365  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-div 11295  df-nn 11636  df-2 11698  df-3 11699  df-4 11700  df-5 11701  df-6 11702  df-7 11703  df-8 11704  df-9 11705  df-n0 11896  df-xnn0 11966  df-z 11980  df-uz 12242  df-rp 12388  df-fz 12891  df-fzo 13032  df-fl 13160  df-mod 13236  df-hash 13689  df-word 13860  df-concat 13919  df-substr 13999  df-pfx 14029  df-csh 14147  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-tset 16580  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-efmnd 18030  df-grp 18102  df-minusg 18103  df-sbg 18104  df-symg 18492  df-tocyc 30770
This theorem is referenced by:  cyc3conja  30820
  Copyright terms: Public domain W3C validator