MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi1 Structured version   Visualization version   GIF version

Theorem fcoi1 6552
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 6514 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 df-fn 6358 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eqimss 4023 . . . . 5 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
4 cnvi 6000 . . . . . . . . . 10 I = I
54reseq1i 5849 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65cnveqi 5745 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
7 cnvresid 6433 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
86, 7eqtr2i 2845 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
98coeq2i 5731 . . . . . 6 (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹( I ↾ 𝐴))
10 cores2 6112 . . . . . 6 (dom 𝐹𝐴 → (𝐹( I ↾ 𝐴)) = (𝐹 ∘ I ))
119, 10syl5eq 2868 . . . . 5 (dom 𝐹𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
123, 11syl 17 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
13 funrel 6372 . . . . 5 (Fun 𝐹 → Rel 𝐹)
14 coi1 6115 . . . . 5 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1513, 14syl 17 . . . 4 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
1612, 15sylan9eqr 2878 . . 3 ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
172, 16sylbi 219 . 2 (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
181, 17syl 17 1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wss 3936   I cid 5459  ccnv 5554  dom cdm 5555  cres 5557  ccom 5559  Rel wrel 5560  Fun wfun 6349   Fn wfn 6350  wf 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-fun 6357  df-fn 6358  df-f 6359
This theorem is referenced by:  fcof1oinvd  7049  mapen  8681  mapfien  8871  hashfacen  13813  cofurid  17161  setccatid  17344  estrccatid  17382  curf2ndf  17497  efmndid  18053  efmndmnd  18054  f1omvdco2  18576  psgnunilem1  18621  pf1mpf  20515  pf1ind  20518  wilthlem3  25647  hoico1  29533  fmptco1f1o  30378  fcobijfs  30459  cycpmconjslem2  30797  cycpmconjs  30798  cyc3conja  30799  reprpmtf1o  31897  ltrncoidN  37279  trlcoabs2N  37873  trlcoat  37874  cdlemg47a  37885  cdlemg46  37886  trljco  37891  tendo1mulr  37922  tendo0co2  37939  cdlemi2  37970  cdlemk2  37983  cdlemk4  37985  cdlemk8  37989  cdlemk53  38108  cdlemk55a  38110  dvhopN  38267  dihopelvalcpre  38399  dihmeetlem1N  38441  dihglblem5apreN  38442  diophrw  39376  mendring  39812  rngccatidALTV  44280  ringccatidALTV  44343
  Copyright terms: Public domain W3C validator