Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac1 Structured version   Visualization version   GIF version

Theorem fmtnofac1 43752
Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result): "Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of Fn ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 43751. (Contributed by AV, 30-Jul-2021.)

Assertion
Ref Expression
fmtnofac1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12326 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 5prm 16442 . . . . . . 7 5 ∈ ℙ
3 dvdsprime 16031 . . . . . . 7 ((5 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
42, 3mpan 688 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
5 1nn0 11914 . . . . . . . . 9 1 ∈ ℕ0
65a1i 11 . . . . . . . 8 (𝑀 = 5 → 1 ∈ ℕ0)
7 simpl 485 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → 𝑀 = 5)
8 oveq1 7163 . . . . . . . . . . 11 (𝑘 = 1 → (𝑘 · 4) = (1 · 4))
98oveq1d 7171 . . . . . . . . . 10 (𝑘 = 1 → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
109adantl 484 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
117, 10eqeq12d 2837 . . . . . . . 8 ((𝑀 = 5 ∧ 𝑘 = 1) → (𝑀 = ((𝑘 · 4) + 1) ↔ 5 = ((1 · 4) + 1)))
12 df-5 11704 . . . . . . . . . 10 5 = (4 + 1)
13 4cn 11723 . . . . . . . . . . . . 13 4 ∈ ℂ
1413mulid2i 10646 . . . . . . . . . . . 12 (1 · 4) = 4
1514eqcomi 2830 . . . . . . . . . . 11 4 = (1 · 4)
1615oveq1i 7166 . . . . . . . . . 10 (4 + 1) = ((1 · 4) + 1)
1712, 16eqtri 2844 . . . . . . . . 9 5 = ((1 · 4) + 1)
1817a1i 11 . . . . . . . 8 (𝑀 = 5 → 5 = ((1 · 4) + 1))
196, 11, 18rspcedvd 3626 . . . . . . 7 (𝑀 = 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
20 0nn0 11913 . . . . . . . . 9 0 ∈ ℕ0
2120a1i 11 . . . . . . . 8 (𝑀 = 1 → 0 ∈ ℕ0)
22 simpl 485 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → 𝑀 = 1)
23 oveq1 7163 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 · 4) = (0 · 4))
2423oveq1d 7171 . . . . . . . . . 10 (𝑘 = 0 → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2524adantl 484 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2622, 25eqeq12d 2837 . . . . . . . 8 ((𝑀 = 1 ∧ 𝑘 = 0) → (𝑀 = ((𝑘 · 4) + 1) ↔ 1 = ((0 · 4) + 1)))
2713mul02i 10829 . . . . . . . . . . . 12 (0 · 4) = 0
2827oveq1i 7166 . . . . . . . . . . 11 ((0 · 4) + 1) = (0 + 1)
29 0p1e1 11760 . . . . . . . . . . 11 (0 + 1) = 1
3028, 29eqtri 2844 . . . . . . . . . 10 ((0 · 4) + 1) = 1
3130eqcomi 2830 . . . . . . . . 9 1 = ((0 · 4) + 1)
3231a1i 11 . . . . . . . 8 (𝑀 = 1 → 1 = ((0 · 4) + 1))
3321, 26, 32rspcedvd 3626 . . . . . . 7 (𝑀 = 1 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
3419, 33jaoi 853 . . . . . 6 ((𝑀 = 5 ∨ 𝑀 = 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
354, 34syl6bi 255 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
36 fveq2 6670 . . . . . . . 8 (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1))
37 fmtno1 43723 . . . . . . . 8 (FermatNo‘1) = 5
3836, 37syl6eq 2872 . . . . . . 7 (𝑁 = 1 → (FermatNo‘𝑁) = 5)
3938breq2d 5078 . . . . . 6 (𝑁 = 1 → (𝑀 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ 5))
40 oveq1 7163 . . . . . . . . . . . . 13 (𝑁 = 1 → (𝑁 + 1) = (1 + 1))
41 1p1e2 11763 . . . . . . . . . . . . 13 (1 + 1) = 2
4240, 41syl6eq 2872 . . . . . . . . . . . 12 (𝑁 = 1 → (𝑁 + 1) = 2)
4342oveq2d 7172 . . . . . . . . . . 11 (𝑁 = 1 → (2↑(𝑁 + 1)) = (2↑2))
44 sq2 13561 . . . . . . . . . . 11 (2↑2) = 4
4543, 44syl6eq 2872 . . . . . . . . . 10 (𝑁 = 1 → (2↑(𝑁 + 1)) = 4)
4645oveq2d 7172 . . . . . . . . 9 (𝑁 = 1 → (𝑘 · (2↑(𝑁 + 1))) = (𝑘 · 4))
4746oveq1d 7171 . . . . . . . 8 (𝑁 = 1 → ((𝑘 · (2↑(𝑁 + 1))) + 1) = ((𝑘 · 4) + 1))
4847eqeq2d 2832 . . . . . . 7 (𝑁 = 1 → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ 𝑀 = ((𝑘 · 4) + 1)))
4948rexbidv 3297 . . . . . 6 (𝑁 = 1 → (∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
5039, 49imbi12d 347 . . . . 5 (𝑁 = 1 → ((𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) ↔ (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))))
5135, 50syl5ibr 248 . . . 4 (𝑁 = 1 → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
52 fmtnofac2 43751 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
53 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
54 2nn0 11915 . . . . . . . . . . . 12 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
5653, 55nn0mulcld 11961 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 · 2) ∈ ℕ0)
5756adantl 484 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 2) ∈ ℕ0)
5857adantr 483 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · 2) ∈ ℕ0)
59 simpr 487 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
60 oveq1 7163 . . . . . . . . . 10 (𝑘 = (𝑛 · 2) → (𝑘 · (2↑(𝑁 + 1))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
6160oveq1d 7171 . . . . . . . . 9 (𝑘 = (𝑛 · 2) → ((𝑘 · (2↑(𝑁 + 1))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
6259, 61eqeqan12d 2838 . . . . . . . 8 (((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) ∧ 𝑘 = (𝑛 · 2)) → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1)))
63 eluzge2nn0 12288 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6463nn0cnd 11958 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
65 add1p1 11889 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
6664, 65syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) + 1) = (𝑁 + 2))
6766eqcomd 2827 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6867oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2↑((𝑁 + 1) + 1)))
69 2cnd 11716 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
70 peano2nn0 11938 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7163, 70syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
7269, 71expp1d 13512 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
7354a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
7473, 71nn0expcld 13608 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
7574nn0cnd 11958 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
7675, 69mulcomd 10662 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2 · (2↑(𝑁 + 1))))
7768, 72, 763eqtrd 2860 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7877adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7978oveq2d 7172 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
80 nn0cn 11908 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
8180adantl 484 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
82 2cnd 11716 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8375adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℂ)
8481, 82, 83mulassd 10664 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 · 2) · (2↑(𝑁 + 1))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
8579, 84eqtr4d 2859 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
86853ad2antl1 1181 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8786adantr 483 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8887oveq1d 7171 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
8958, 62, 88rspcedvd 3626 . . . . . . 7 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
9089rexlimdva2 3287 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9152, 90mpd 15 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
92913exp 1115 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
9351, 92jaoi 853 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
941, 93sylbi 219 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
95943imp 1107 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cn 11638  2c2 11693  4c4 11695  5c5 11696  0cn0 11898  cuz 12244  cexp 13430  cdvds 15607  cprime 16015  FermatNocfmtno 43709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-dvds 15608  df-gcd 15844  df-prm 16016  df-odz 16102  df-phi 16103  df-pc 16174  df-lgs 25871  df-fmtno 43710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator