Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem8 Structured version   Visualization version   GIF version

Theorem dnibndlem8 32114
Description: Lemma for dnibnd 32120. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnibndlem8.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
dnibndlem8 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))

Proof of Theorem dnibndlem8
StepHypRef Expression
1 dnibndlem8.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 halfre 11190 . . . . . . . 8 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 554 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 simpl 473 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → 𝐴 ∈ ℝ)
62a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 / 2) ∈ ℝ)
75, 6readdcld 10013 . . . . . 6 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
84, 7syl 17 . . . . 5 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
9 reflcl 12537 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
108, 9syl 17 . . . 4 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
111, 10resubcld 10402 . . 3 (𝜑 → (𝐴 − (⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
121dnicld1 32101 . . 3 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
1311leabsd 14087 . . . 4 (𝜑 → (𝐴 − (⌊‘(𝐴 + (1 / 2)))) ≤ (abs‘(𝐴 − (⌊‘(𝐴 + (1 / 2))))))
141recnd 10012 . . . . 5 (𝜑𝐴 ∈ ℂ)
1510recnd 10012 . . . . 5 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
1614, 15abssubd 14126 . . . 4 (𝜑 → (abs‘(𝐴 − (⌊‘(𝐴 + (1 / 2))))) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
1713, 16breqtrd 4639 . . 3 (𝜑 → (𝐴 − (⌊‘(𝐴 + (1 / 2)))) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
1811, 12, 3, 17lesub2dd 10588 . 2 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ ((1 / 2) − (𝐴 − (⌊‘(𝐴 + (1 / 2))))))
193recnd 10012 . . . 4 (𝜑 → (1 / 2) ∈ ℂ)
2019, 14, 15subsub3d 10366 . . 3 (𝜑 → ((1 / 2) − (𝐴 − (⌊‘(𝐴 + (1 / 2))))) = (((1 / 2) + (⌊‘(𝐴 + (1 / 2)))) − 𝐴))
2119, 15addcomd 10182 . . . 4 (𝜑 → ((1 / 2) + (⌊‘(𝐴 + (1 / 2)))) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
2221oveq1d 6619 . . 3 (𝜑 → (((1 / 2) + (⌊‘(𝐴 + (1 / 2)))) − 𝐴) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
2320, 22eqtrd 2655 . 2 (𝜑 → ((1 / 2) − (𝐴 − (⌊‘(𝐴 + (1 / 2))))) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
2418, 23breqtrd 4639 1 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883  cle 10019  cmin 10210   / cdiv 10628  2c2 11014  cfl 12531  abscabs 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910
This theorem is referenced by:  dnibndlem9  32115
  Copyright terms: Public domain W3C validator