MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub2dd Structured version   Visualization version   GIF version

Theorem lesub2dd 10591
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
leadd1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lesub2dd (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))

Proof of Theorem lesub2dd
StepHypRef Expression
1 leadd1dd.4 . 2 (𝜑𝐴𝐵)
2 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4lesub2d 10582 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐶𝐵) ≤ (𝐶𝐴)))
61, 5mpbid 222 1 (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987   class class class wbr 4615  (class class class)co 6607  cr 9882  cle 10022  cmin 10213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-po 4997  df-so 4998  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216
This theorem is referenced by:  fzomaxdiflem  14019  icodiamlt  14111  climsqz  14308  rlimsqz  14317  climsup  14337  dvlog2lem  24305  atans2  24565  harmonicbnd4  24644  lgamgulmlem3  24664  gausslemma2dlem1a  24997  pntrlog2bndlem1  25173  pntrlog2bndlem5  25177  pntpbnd1  25182  pntlemj  25199  clwlkclwwlklem2fv1  26770  dnibndlem7  32137  dnibndlem8  32138  unbdqndv2lem2  32164  iccbnd  33292  irrapxlem3  36889  jm2.17a  37028  fzmaxdif  37049  ioodvbdlimc2lem  39472  dvnmul  39481  stoweidlem24  39564  stoweidlem41  39581  stoweidlem45  39585  fourierdlem7  39654  fourierdlem19  39666  fourierdlem42  39689  fourierdlem63  39709  fourierdlem65  39711  etransclem24  39798  etransclem27  39801
  Copyright terms: Public domain W3C validator