Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocbrsiga Structured version   Visualization version   GIF version

Theorem dya2iocbrsiga 30136
 Description: Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2iocbrsiga ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)   𝑁(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem dya2iocbrsiga
StepHypRef Expression
1 sxbrsiga.0 . . 3 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . 3 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
31, 2dya2iocival 30134 . 2 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
4 mnfxr 10047 . . . . 5 -∞ ∈ ℝ*
54a1i 11 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ ∈ ℝ*)
6 simpr 477 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ)
76zred 11433 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℝ)
8 2rp 11788 . . . . . . . 8 2 ∈ ℝ+
98a1i 11 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 2 ∈ ℝ+)
10 simpl 473 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑁 ∈ ℤ)
119, 10rpexpcld 12979 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2↑𝑁) ∈ ℝ+)
127, 11rerpdivcld 11854 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ)
1312rexrd 10040 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ*)
14 1red 10006 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 1 ∈ ℝ)
157, 14readdcld 10020 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 + 1) ∈ ℝ)
1615, 11rerpdivcld 11854 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ)
1716rexrd 10040 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*)
18 mnflt 11908 . . . . 5 ((𝑋 / (2↑𝑁)) ∈ ℝ → -∞ < (𝑋 / (2↑𝑁)))
1912, 18syl 17 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ < (𝑋 / (2↑𝑁)))
20 difioo 29406 . . . 4 (((-∞ ∈ ℝ* ∧ (𝑋 / (2↑𝑁)) ∈ ℝ* ∧ ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) ∧ -∞ < (𝑋 / (2↑𝑁))) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
215, 13, 17, 19, 20syl31anc 1326 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
22 brsigarn 30046 . . . . 5 𝔅 ∈ (sigAlgebra‘ℝ)
23 elrnsiga 29988 . . . . 5 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
2422, 23ax-mp 5 . . . 4 𝔅 ran sigAlgebra
25 retop 22484 . . . . . 6 (topGen‘ran (,)) ∈ Top
26 iooretop 22488 . . . . . 6 (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,))
27 elsigagen 30009 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))))
2825, 26, 27mp2an 707 . . . . 5 (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))
29 df-brsiga 30044 . . . . 5 𝔅 = (sigaGen‘(topGen‘ran (,)))
3028, 29eleqtrri 2697 . . . 4 (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅
31 iooretop 22488 . . . . . 6 (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,))
32 elsigagen 30009 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))))
3325, 31, 32mp2an 707 . . . . 5 (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))
3433, 29eleqtrri 2697 . . . 4 (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅
35 difelsiga 29995 . . . 4 ((𝔅 ran sigAlgebra ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅 ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅)
3624, 30, 34, 35mp3an 1421 . . 3 ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅
3721, 36syl6eqelr 2707 . 2 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅)
383, 37eqeltrd 2698 1 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ∖ cdif 3556  ∪ cuni 4407   class class class wbr 4618  ran crn 5080  ‘cfv 5852  (class class class)co 6610   ↦ cmpt2 6612  ℝcr 9886  1c1 9888   + caddc 9890  -∞cmnf 10023  ℝ*cxr 10024   < clt 10025   / cdiv 10635  2c2 11021  ℤcz 11328  ℝ+crp 11783  (,)cioo 12124  [,)cico 12126  ↑cexp 12807  topGenctg 16026  Topctop 20626  sigAlgebracsiga 29969  sigaGencsigagen 30000  𝔅ℝcbrsiga 30043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-ac2 9236  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-acn 8719  df-ac 8890  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-n0 11244  df-z 11329  df-uz 11639  df-q 11740  df-rp 11784  df-ioo 12128  df-ico 12130  df-seq 12749  df-exp 12808  df-topgen 16032  df-top 20627  df-bases 20670  df-siga 29970  df-sigagen 30001  df-brsiga 30044 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator