MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1eq Structured version   Visualization version   GIF version

Theorem elfz1eq 12294
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
Assertion
Ref Expression
elfz1eq (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)

Proof of Theorem elfz1eq
StepHypRef Expression
1 elfzle2 12287 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝐾𝑁)
2 elfzle1 12286 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝑁𝐾)
3 elfzelz 12284 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ)
4 elfzel2 12282 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ)
5 zre 11325 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
6 zre 11325 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7 letri3 10067 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
85, 6, 7syl2an 494 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
93, 4, 8syl2anc 692 . 2 (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
101, 2, 9mpbir2and 956 1 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613  (class class class)co 6604  cr 9879  cle 10019  cz 11321  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-pre-lttri 9954  ax-pre-lttrn 9955
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-neg 10213  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  fzsn  12325  fz1sbc  12357  fzm1  12361  bccl  13049  hashbc  13175  swrdccatin1  13420  sumsn  14405  climcnds  14508  prmind2  15322  3prm  15330  vdwlem8  15616  od1  17897  gex1  17927  frgpnabllem1  18197  ply1termlem  23863  coefv0  23908  coemulc  23915  logtayl  24306  leibpilem2  24568  chp1  24793  chtub  24837  2sqlem10  25053  dchrisum0flb  25099  ostth2lem2  25223  axlowdimlem16  25737  sdclem2  33170  sumsnd  38668  sumsnf  39205  fourierdlem20  39651
  Copyright terms: Public domain W3C validator