Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv2 Structured version   Visualization version   GIF version

Theorem eulerpartlemsv2 29550
Description: Lemma for eulerpart 29574. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsv2 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemsv2
StepHypRef Expression
1 eulerpartlems.r . . 3 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . 3 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsv1 29548 . 2 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
4 cnvimass 5388 . . . 4 (𝐴 “ ℕ) ⊆ dom 𝐴
51, 2eulerpartlemelr 29549 . . . . . 6 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
65simpld 473 . . . . 5 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
7 fdm 5947 . . . . 5 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
86, 7syl 17 . . . 4 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → dom 𝐴 = ℕ)
94, 8syl5sseq 3612 . . 3 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ⊆ ℕ)
106adantr 479 . . . . . 6 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
119sselda 3564 . . . . . 6 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
1210, 11ffvelrnd 6250 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
1311nnnn0d 11195 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
1412, 13nn0mulcld 11200 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1514nn0cnd 11197 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
16 simpr 475 . . . . . . . 8 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1716eldifad 3548 . . . . . . 7 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1816eldifbd 3549 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
196adantr 479 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
20 ffn 5941 . . . . . . . . . 10 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
21 elpreima 6227 . . . . . . . . . 10 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
2219, 20, 213syl 18 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
2318, 22mtbid 312 . . . . . . . 8 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
24 imnan 436 . . . . . . . 8 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2523, 24sylibr 222 . . . . . . 7 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2617, 25mpd 15 . . . . . 6 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2719, 17ffvelrnd 6250 . . . . . . 7 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
28 elnn0 11138 . . . . . . 7 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2927, 28sylib 206 . . . . . 6 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
30 orel1 395 . . . . . 6 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
3126, 29, 30sylc 62 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
3231oveq1d 6539 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
3317nncnd 10880 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3433mul02d 10082 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3532, 34eqtrd 2640 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
36 nnuz 11552 . . . . 5 ℕ = (ℤ‘1)
3736eqimssi 3618 . . . 4 ℕ ⊆ (ℤ‘1)
3837a1i 11 . . 3 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ‘1))
399, 15, 35, 38sumss 14245 . 2 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
403, 39eqtr4d 2643 1 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  {cab 2592  cdif 3533  cin 3535  wss 3536  cmpt 4634  ccnv 5024  dom cdm 5025  cima 5028   Fn wfn 5782  wf 5783  cfv 5787  (class class class)co 6524  𝑚 cmap 7718  Fincfn 7815  0cc0 9789  1c1 9790   · cmul 9794  cn 10864  0cn0 11136  cuz 11516  Σcsu 14207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-oi 8272  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-fz 12150  df-fzo 12287  df-seq 12616  df-exp 12675  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-clim 14010  df-sum 14208
This theorem is referenced by:  eulerpartlemsf  29551  eulerpartlemgs2  29572
  Copyright terms: Public domain W3C validator