MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0mulcld Structured version   Visualization version   GIF version

Theorem nn0mulcld 11300
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1 (𝜑𝐴 ∈ ℕ0)
nn0addcld.2 (𝜑𝐵 ∈ ℕ0)
Assertion
Ref Expression
nn0mulcld (𝜑 → (𝐴 · 𝐵) ∈ ℕ0)

Proof of Theorem nn0mulcld
StepHypRef Expression
1 nn0red.1 . 2 (𝜑𝐴 ∈ ℕ0)
2 nn0addcld.2 . 2 (𝜑𝐵 ∈ ℕ0)
3 nn0mulcl 11273 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℕ0)
41, 2, 3syl2anc 692 1 (𝜑 → (𝐴 · 𝐵) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  (class class class)co 6604   · cmul 9885  0cn0 11236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-nn 10965  df-n0 11237
This theorem is referenced by:  quoremnn0ALT  12596  expmulz  12846  faclbnd4lem3  13022  oddge22np1  14997  mulgcd  15189  rpmulgcd2  15294  hashgcdlem  15417  odzdvds  15424  prmreclem3  15546  vdwapf  15600  vdwlem5  15613  vdwlem6  15614  odmodnn0  17880  odmulg  17894  odadd  18174  ablfacrplem  18385  ablfacrp2  18387  2lgslem1c  25018  2lgslem3a  25021  2lgslem3b  25022  2lgslem3c  25023  2lgslem3d  25024  dchrisumlem1  25078  eulerpartlemsv2  30198  eulerpartlemsf  30199  eulerpartlems  30200  eulerpartlemv  30204  eulerpartlemb  30208  erdsze2lem1  30890  erdsze2lem2  30891  pell1qrge1  36911  jm2.27c  37051  rmxdiophlem  37059  stoweidlem1  39522  wallispilem4  39589  wallispilem5  39590  wallispi2lem2  39593  stirlinglem3  39597  stirlinglem5  39599  stirlinglem7  39601  stirlinglem10  39604  stirlinglem11  39605  etransclem32  39787  etransclem44  39799  etransclem46  39801  fmtnofac2lem  40776  fmtnofac1  40778  2pwp1prm  40799  lighneallem3  40820  ply1mulgsumlem2  41460
  Copyright terms: Public domain W3C validator