Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumlesge0 Structured version   Visualization version   GIF version

Theorem fsumlesge0 39898
 Description: Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumlesge0.x (𝜑𝑋𝑉)
fsumlesge0.f (𝜑𝐹:𝑋⟶(0[,)+∞))
fsumlesge0.y (𝜑𝑌𝑋)
fsumlesge0.fi (𝜑𝑌 ∈ Fin)
Assertion
Ref Expression
fsumlesge0 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem fsumlesge0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumlesge0.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,)+∞))
21sge0rnre 39885 . . . 4 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ)
3 ressxr 10027 . . . . 5 ℝ ⊆ ℝ*
43a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 3593 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ*)
6 fsumlesge0.y . . . . . . 7 (𝜑𝑌𝑋)
7 fsumlesge0.x . . . . . . . . 9 (𝜑𝑋𝑉)
87, 6ssexd 4765 . . . . . . . 8 (𝜑𝑌 ∈ V)
9 elpwg 4138 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝑋𝑌𝑋))
116, 10mpbird 247 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝑋)
12 fsumlesge0.fi . . . . . 6 (𝜑𝑌 ∈ Fin)
1311, 12elind 3776 . . . . 5 (𝜑𝑌 ∈ (𝒫 𝑋 ∩ Fin))
14 fveq2 6148 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1514cbvsumv 14360 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)
1615a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧))
17 sumeq1 14353 . . . . . . 7 (𝑦 = 𝑌 → Σ𝑧𝑦 (𝐹𝑧) = Σ𝑧𝑌 (𝐹𝑧))
1817eqeq2d 2631 . . . . . 6 (𝑦 = 𝑌 → (Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧) ↔ Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)))
1918rspcev 3295 . . . . 5 ((𝑌 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑌 (𝐹𝑧)) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
2013, 16, 19syl2anc 692 . . . 4 (𝜑 → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧))
21 sumex 14352 . . . . . 6 Σ𝑥𝑌 (𝐹𝑥) ∈ V
2221a1i 11 . . . . 5 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ V)
23 eqid 2621 . . . . . 6 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))
2423elrnmpt 5332 . . . . 5 𝑥𝑌 (𝐹𝑥) ∈ V → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2522, 24syl 17 . . . 4 (𝜑 → (Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑌 (𝐹𝑥) = Σ𝑧𝑦 (𝐹𝑧)))
2620, 25mpbird 247 . . 3 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)))
27 supxrub 12097 . . 3 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)) ⊆ ℝ* ∧ Σ𝑥𝑌 (𝐹𝑥) ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧))) → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
285, 26, 27syl2anc 692 . 2 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
297, 1sge0reval 39893 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ))
3029eqcomd 2627 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑧𝑦 (𝐹𝑧)), ℝ*, < ) = (Σ^𝐹))
3128, 30breqtrd 4639 1 (𝜑 → Σ𝑥𝑌 (𝐹𝑥) ≤ (Σ^𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987  ∃wrex 2908  Vcvv 3186   ∩ cin 3554   ⊆ wss 3555  𝒫 cpw 4130   class class class wbr 4613   ↦ cmpt 4673  ran crn 5075  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  Fincfn 7899  supcsup 8290  ℝcr 9879  0cc0 9880  +∞cpnf 10015  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  [,)cico 12119  Σcsu 14350  Σ^csumge0 39883 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-sumge0 39884 This theorem is referenced by:  sge0fsum  39908  sge0rnbnd  39914  sge0split  39930
 Copyright terms: Public domain W3C validator