Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0split Structured version   Visualization version   GIF version

Theorem sge0split 42740
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0split.a (𝜑𝐴𝑉)
sge0split.b (𝜑𝐵𝑊)
sge0split.u 𝑈 = (𝐴𝐵)
sge0split.in0 (𝜑 → (𝐴𝐵) = ∅)
sge0split.f (𝜑𝐹:𝑈⟶(0[,]+∞))
Assertion
Ref Expression
sge0split (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))

Proof of Theorem sge0split
Dummy variables 𝑎 𝑏 𝑥 𝑧 𝑦 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0split.a . . . . 5 (𝜑𝐴𝑉)
21adantr 483 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐴𝑉)
3 sge0split.b . . . . 5 (𝜑𝐵𝑊)
43adantr 483 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐵𝑊)
5 sge0split.u . . . 4 𝑈 = (𝐴𝐵)
6 sge0split.in0 . . . . 5 (𝜑 → (𝐴𝐵) = ∅)
76adantr 483 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐴𝐵) = ∅)
8 sge0split.f . . . . 5 (𝜑𝐹:𝑈⟶(0[,]+∞))
98adantr 483 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑈⟶(0[,]+∞))
10 simpr 487 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
112, 4, 5, 7, 9, 10sge0resplit 42737 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
12 unexg 7472 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
131, 3, 12syl2anc 586 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ V)
145, 13eqeltrid 2917 . . . . . . 7 (𝜑𝑈 ∈ V)
1514adantr 483 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑈 ∈ V)
1615, 9, 10sge0ssre 42728 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐴)) ∈ ℝ)
1715, 9, 10sge0ssre 42728 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐵)) ∈ ℝ)
18 rexadd 12626 . . . . 5 (((Σ^‘(𝐹𝐴)) ∈ ℝ ∧ (Σ^‘(𝐹𝐵)) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
1916, 17, 18syl2anc 586 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
2019eqcomd 2827 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
2111, 20eqtrd 2856 . 2 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
22 simpl 485 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → 𝜑)
23 simpr 487 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ (Σ^𝐹) ∈ ℝ)
2414, 8sge0repnf 42717 . . . . . 6 (𝜑 → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2524adantr 483 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2623, 25mtbid 326 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ ¬ (Σ^𝐹) = +∞)
2726notnotrd 135 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = +∞)
2814, 8sge0xrcl 42716 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
2928adantr 483 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ*)
30 ssun1 4148 . . . . . . . . . 10 𝐴 ⊆ (𝐴𝐵)
3130, 5sseqtrri 4004 . . . . . . . . 9 𝐴𝑈
3231a1i 11 . . . . . . . 8 (𝜑𝐴𝑈)
338, 32fssresd 6545 . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴⟶(0[,]+∞))
341, 33sge0xrcl 42716 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
35 iccssxr 12820 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
36 ssun2 4149 . . . . . . . . . . 11 𝐵 ⊆ (𝐴𝐵)
3736, 5sseqtrri 4004 . . . . . . . . . 10 𝐵𝑈
3837a1i 11 . . . . . . . . 9 (𝜑𝐵𝑈)
398, 38fssresd 6545 . . . . . . . 8 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
403, 39sge0cl 42712 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ (0[,]+∞))
4135, 40sseldi 3965 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
4234, 41xaddcld 12695 . . . . 5 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
4342adantr 483 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
44 pnfxr 10695 . . . . . . . . 9 +∞ ∈ ℝ*
45 eqid 2821 . . . . . . . . 9 +∞ = +∞
46 xreqle 41635 . . . . . . . . 9 ((+∞ ∈ ℝ* ∧ +∞ = +∞) → +∞ ≤ +∞)
4744, 45, 46mp2an 690 . . . . . . . 8 +∞ ≤ +∞
4847a1i 11 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ≤ +∞)
4914adantr 483 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝑈 ∈ V)
508adantr 483 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐹:𝑈⟶(0[,]+∞))
51 rnresss 41488 . . . . . . . . . . 11 ran (𝐹𝐴) ⊆ ran 𝐹
5251sseli 3963 . . . . . . . . . 10 (+∞ ∈ ran (𝐹𝐴) → +∞ ∈ ran 𝐹)
5352adantl 484 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran 𝐹)
5449, 50, 53sge0pnfval 42704 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = +∞)
55 xrge0neqmnf 12841 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐵)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐵)) ≠ -∞)
5640, 55syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐵)) ≠ -∞)
57 xaddpnf2 12621 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐵)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐵)) ≠ -∞) → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5841, 56, 57syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5958eqcomd 2827 . . . . . . . . . . 11 (𝜑 → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
6059adantr 483 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
611adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
6233adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
63 simpr 487 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran (𝐹𝐴))
6461, 62, 63sge0pnfval 42704 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = +∞)
6564oveq1d 7171 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (+∞ +𝑒^‘(𝐹𝐵))))
6660, 54, 653eqtr4d 2866 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
6766, 54eqtr3d 2858 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
6854, 67breq12d 5079 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
6948, 68mpbird 259 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
7047a1i 11 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ≤ +∞)
7114adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
728adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
73 rnresss 41488 . . . . . . . . . . . . 13 ran (𝐹𝐵) ⊆ ran 𝐹
7473sseli 3963 . . . . . . . . . . . 12 (+∞ ∈ ran (𝐹𝐵) → +∞ ∈ ran 𝐹)
7574adantl 484 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran 𝐹)
7671, 72, 75sge0pnfval 42704 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = +∞)
773adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
7839adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
79 simpr 487 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran (𝐹𝐵))
8077, 78, 79sge0pnfval 42704 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = +∞)
8180oveq2d 7172 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒 +∞))
821, 33sge0cl 42712 . . . . . . . . . . . . . 14 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ (0[,]+∞))
83 xrge0neqmnf 12841 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐴)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐴)) ≠ -∞)
8482, 83syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐴)) ≠ -∞)
85 xaddpnf1 12620 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐴)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐴)) ≠ -∞) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8634, 84, 85syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8786adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8881, 87eqtrd 2856 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
8976, 88breq12d 5079 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
9070, 89mpbird 259 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
9190adantlr 713 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
92 simpr 487 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
93 vex 3497 . . . . . . . . . . . . 13 𝑧 ∈ V
94 eqid 2821 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
9594elrnmpt 5828 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦)))
9693, 95ax-mp 5 . . . . . . . . . . . 12 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
9792, 96sylib 220 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
98 simp3 1134 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 = Σ𝑦𝑥 (𝐹𝑦))
99 inss1 4205 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐴)
100 inss2 4206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴) ⊆ 𝐴
10199, 100sstri 3976 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐴
102 inss2 4206 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐵)
103 inss2 4206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐵) ⊆ 𝐵
104102, 103sstri 3976 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐵
105101, 104ssini 4208 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵)
106105a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵))
107106, 6sseqtrd 4007 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅)
108 ss0 4352 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅ → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
110109ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
111 indi 4250 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∩ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
112111eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵))
113112a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵)))
1145eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) = 𝑈
115114ineq2i 4186 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈)
116115a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈))
117 elinel1 4172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ 𝒫 𝑈)
118 elpwi 4548 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝑈𝑥𝑈)
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥𝑈)
120 df-ss 3952 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈 ↔ (𝑥𝑈) = 𝑥)
121120biimpi 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → (𝑥𝑈) = 𝑥)
122119, 121syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝑈) = 𝑥)
123113, 116, 1223eqtrrd 2861 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
124123adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
125 elinel2 4173 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ Fin)
126125adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 ∈ Fin)
127 rge0ssre 12845 . . . . . . . . . . . . . . . . . . . . 21 (0[,)+∞) ⊆ ℝ
1288ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
129 pm4.56 985 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ↔ ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
130129biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
131 elun 4125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) ↔ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
132130, 131sylnibr 331 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
133132adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
134 rnresun 41485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ran (𝐹 ↾ (𝐴𝐵)) = (ran (𝐹𝐴) ∪ ran (𝐹𝐵))
135134eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵)))
137114reseq2i 5850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ↾ (𝐴𝐵)) = (𝐹𝑈)
138137rneqi 5807 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈))
140 ffn 6514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:𝑈⟶(0[,]+∞) → 𝐹 Fn 𝑈)
141 fnresdm 6466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 Fn 𝑈 → (𝐹𝑈) = 𝐹)
1428, 140, 1413syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐹𝑈) = 𝐹)
143142rneqd 5808 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹𝑈) = ran 𝐹)
144136, 139, 1433eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
145144ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
146133, 145neleqtrd 2934 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran 𝐹)
147128, 146fge0iccico 42701 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,)+∞))
148147ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑈⟶(0[,)+∞))
149119adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑈)
150 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
151149, 150sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑈)
152151adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑈)
153148, 152ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
154127, 153sseldi 3965 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
155154recnd 10669 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
156110, 124, 126, 155fsumsplit 15097 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
157 infi 8742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐴) ∈ Fin)
158125, 157syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ Fin)
159158adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
160 simpl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
161 elinel1 4172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐴) → 𝑦𝑥)
162161adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → 𝑦𝑥)
163160, 162, 154syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (𝐹𝑦) ∈ ℝ)
164159, 163fsumrecl 15091 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ)
165 infi 8742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐵) ∈ Fin)
166125, 165syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ∈ Fin)
167166adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
168 simpl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
169 elinel1 4172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐵) → 𝑦𝑥)
170169adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → 𝑦𝑥)
171168, 170, 154syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝐹𝑦) ∈ ℝ)
172167, 171fsumrecl 15091 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ)
173 rexadd 12626 . . . . . . . . . . . . . . . . . . . 20 ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
174164, 172, 173syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
175174eqcomd 2827 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
176156, 175eqtrd 2856 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
177 ressxr 10685 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
178177, 164sseldi 3965 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ*)
179177, 172sseldi 3965 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*)
1801adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
18133adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
182 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → ¬ +∞ ∈ ran (𝐹𝐴))
183181, 182fge0iccico 42701 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
184180, 183sge0reval 42703 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
185184eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) = (Σ^‘(𝐹𝐴)))
18634adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
187185, 186eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
188187adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
1893adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
19039adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
191 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran (𝐹𝐵))
192190, 191fge0iccico 42701 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
193189, 192sge0reval 42703 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
194193eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) = (Σ^‘(𝐹𝐵)))
19541adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
196194, 195eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
197196adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
198188, 197jca 514 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
199198adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
200178, 179, 199jca31 517 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)))
201180adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐴𝑉)
202181adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
203182adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐴))
204202, 203fge0iccico 42701 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
205100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ⊆ 𝐴)
206158adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
207201, 204, 205, 206fsumlesge0 42708 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)))
208100sseli 3963 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐴) → 𝑦𝐴)
209 fvres 6689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
211210adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
212211sumeq2dv 15060 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦))
213184adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
214212, 213breq12d 5079 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)) ↔ Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < )))
215207, 214mpbid 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
216215adantlr 713 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
217189adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐵𝑊)
218190adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
219191adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐵))
220218, 219fge0iccico 42701 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
221103a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ⊆ 𝐵)
222166adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
223217, 220, 221, 222fsumlesge0 42708 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)))
224103sseli 3963 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐵) → 𝑦𝐵)
225 fvres 6689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
226224, 225syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐵) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
227226adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
228227sumeq2dv 15060 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))
229193adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
230228, 229breq12d 5079 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)) ↔ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
231223, 230mpbid 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
232231adantllr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
233216, 232jca 514 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
234 xle2add 12653 . . . . . . . . . . . . . . . . . 18 (((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
235200, 233, 234sylc 65 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
236176, 235eqbrtrd 5088 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2372363adant3 1128 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
23898, 237eqbrtrd 5088 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2392383exp 1115 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))))
240239rexlimdv 3283 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
241240adantr 483 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
24297, 241mpd 15 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
243242ralrimiva 3182 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
244147sge0rnre 42695 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
245177a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ℝ ⊆ ℝ*)
246244, 245sstrd 3977 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
247188, 197xaddcld 12695 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*)
248 supxrleub 12720 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
249246, 247, 248syl2anc 586 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
250243, 249mpbird 259 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
25114ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
252251, 147sge0reval 42703 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
253184adantr 483 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
254193adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
255253, 254oveq12d 7174 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
256250, 252, 2553brtr4d 5098 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25791, 256pm2.61dan 811 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25869, 257pm2.61dan 811 . . . . 5 (𝜑 → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
259258adantr 483 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
260 pnfge 12526 . . . . . . 7 (((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ* → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
26142, 260syl 17 . . . . . 6 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
262261adantr 483 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
263 id 22 . . . . . . 7 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
264263eqcomd 2827 . . . . . 6 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
265264adantl 484 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
266262, 265breqtrd 5092 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ (Σ^𝐹))
26729, 43, 259, 266xrletrid 12549 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26822, 27, 267syl2anc 586 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26921, 268pm2.61dan 811 1 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cun 3934  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539   class class class wbr 5066  cmpt 5146  ran crn 5556  cres 5557   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  supcsup 8904  cr 10536  0cc0 10537   + caddc 10540  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676   +𝑒 cxad 12506  [,)cico 12741  [,]cicc 12742  Σcsu 15042  Σ^csumge0 42693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-xadd 12509  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-sumge0 42694
This theorem is referenced by:  sge0splitmpt  42742
  Copyright terms: Public domain W3C validator