![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash2iun1dif1 | Structured version Visualization version GIF version |
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
hash2iun1dif1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
hash2iun1dif1.b | ⊢ 𝐵 = (𝐴 ∖ {𝑥}) |
hash2iun1dif1.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) |
hash2iun1dif1.da | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.db | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) |
hash2iun1dif1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (#‘𝐶) = 1) |
Ref | Expression |
---|---|
hash2iun1dif1 | ⊢ (𝜑 → (#‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hash2iun1dif1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | hash2iun1dif1.b | . . . 4 ⊢ 𝐵 = (𝐴 ∖ {𝑥}) | |
3 | diffi 8233 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ∈ Fin) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
6 | 2, 5 | syl5eqel 2734 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
7 | hash2iun1dif1.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) | |
8 | hash2iun1dif1.da | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) | |
9 | hash2iun1dif1.db | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) | |
10 | 1, 6, 7, 8, 9 | hash2iun 14599 | . 2 ⊢ (𝜑 → (#‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (#‘𝐶)) |
11 | hash2iun1dif1.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (#‘𝐶) = 1) | |
12 | 11 | 2sumeq2dv 14480 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (#‘𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1) |
13 | 1cnd 10094 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℂ) | |
14 | fsumconst 14566 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦 ∈ 𝐵 1 = ((#‘𝐵) · 1)) | |
15 | 6, 13, 14 | syl2anc 694 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑦 ∈ 𝐵 1 = ((#‘𝐵) · 1)) |
16 | 15 | sumeq2dv 14477 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 ((#‘𝐵) · 1)) |
17 | 2 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (𝐴 ∖ {𝑥})) |
18 | 17 | fveq2d 6233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (#‘𝐵) = (#‘(𝐴 ∖ {𝑥}))) |
19 | hashdifsn 13240 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴) → (#‘(𝐴 ∖ {𝑥})) = ((#‘𝐴) − 1)) | |
20 | 1, 19 | sylan 487 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (#‘(𝐴 ∖ {𝑥})) = ((#‘𝐴) − 1)) |
21 | 18, 20 | eqtrd 2685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (#‘𝐵) = ((#‘𝐴) − 1)) |
22 | 21 | oveq1d 6705 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((#‘𝐵) · 1) = (((#‘𝐴) − 1) · 1)) |
23 | 22 | sumeq2dv 14477 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((#‘𝐵) · 1) = Σ𝑥 ∈ 𝐴 (((#‘𝐴) − 1) · 1)) |
24 | hashcl 13185 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0) | |
25 | 1, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (#‘𝐴) ∈ ℕ0) |
26 | 25 | nn0cnd 11391 | . . . . . . 7 ⊢ (𝜑 → (#‘𝐴) ∈ ℂ) |
27 | peano2cnm 10385 | . . . . . . 7 ⊢ ((#‘𝐴) ∈ ℂ → ((#‘𝐴) − 1) ∈ ℂ) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((#‘𝐴) − 1) ∈ ℂ) |
29 | 28 | mulid1d 10095 | . . . . 5 ⊢ (𝜑 → (((#‘𝐴) − 1) · 1) = ((#‘𝐴) − 1)) |
30 | 29 | sumeq2ad 14478 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((#‘𝐴) − 1) · 1) = Σ𝑥 ∈ 𝐴 ((#‘𝐴) − 1)) |
31 | fsumconst 14566 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ((#‘𝐴) − 1) ∈ ℂ) → Σ𝑥 ∈ 𝐴 ((#‘𝐴) − 1) = ((#‘𝐴) · ((#‘𝐴) − 1))) | |
32 | 1, 28, 31 | syl2anc 694 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((#‘𝐴) − 1) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
33 | 30, 32 | eqtrd 2685 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((#‘𝐴) − 1) · 1) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
34 | 16, 23, 33 | 3eqtrd 2689 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = ((#‘𝐴) · ((#‘𝐴) − 1))) |
35 | 10, 12, 34 | 3eqtrd 2689 | 1 ⊢ (𝜑 → (#‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((#‘𝐴) · ((#‘𝐴) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 {csn 4210 ∪ ciun 4552 Disj wdisj 4652 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 ℂcc 9972 1c1 9975 · cmul 9979 − cmin 10304 ℕ0cn0 11330 #chash 13157 Σcsu 14460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 |
This theorem is referenced by: frgrhash2wsp 27312 fusgreghash2wspv 27315 |
Copyright terms: Public domain | W3C validator |