![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumconst | Structured version Visualization version GIF version |
Description: The sum of constant terms (𝑘 is not free in 𝐴). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumconst | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul02 10252 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (0 · 𝐵) = 0) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0) |
3 | 2 | eqcomd 2657 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → 0 = (0 · 𝐵)) |
4 | sumeq1 14463 | . . . . 5 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) | |
5 | sum0 14496 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
6 | 4, 5 | syl6eq 2701 | . . . 4 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
7 | fveq2 6229 | . . . . . 6 ⊢ (𝐴 = ∅ → (#‘𝐴) = (#‘∅)) | |
8 | hash0 13196 | . . . . . 6 ⊢ (#‘∅) = 0 | |
9 | 7, 8 | syl6eq 2701 | . . . . 5 ⊢ (𝐴 = ∅ → (#‘𝐴) = 0) |
10 | 9 | oveq1d 6705 | . . . 4 ⊢ (𝐴 = ∅ → ((#‘𝐴) · 𝐵) = (0 · 𝐵)) |
11 | 6, 10 | eqeq12d 2666 | . . 3 ⊢ (𝐴 = ∅ → (Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵) ↔ 0 = (0 · 𝐵))) |
12 | 3, 11 | syl5ibrcom 237 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵))) |
13 | eqidd 2652 | . . . . . . 7 ⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = 𝐵) | |
14 | simprl 809 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈ ℕ) | |
15 | simprr 811 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) | |
16 | simpllr 815 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
17 | simplr 807 | . . . . . . . 8 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝐵 ∈ ℂ) | |
18 | elfznn 12408 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...(#‘𝐴)) → 𝑛 ∈ ℕ) | |
19 | fvconst2g 6508 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝑛 ∈ ℕ) → ((ℕ × {𝐵})‘𝑛) = 𝐵) | |
20 | 17, 18, 19 | syl2an 493 | . . . . . . 7 ⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((ℕ × {𝐵})‘𝑛) = 𝐵) |
21 | 13, 14, 15, 16, 20 | fsum 14495 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (ℕ × {𝐵}))‘(#‘𝐴))) |
22 | ser1const 12897 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ (#‘𝐴) ∈ ℕ) → (seq1( + , (ℕ × {𝐵}))‘(#‘𝐴)) = ((#‘𝐴) · 𝐵)) | |
23 | 22 | ad2ant2lr 799 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (seq1( + , (ℕ × {𝐵}))‘(#‘𝐴)) = ((#‘𝐴) · 𝐵)) |
24 | 21, 23 | eqtrd 2685 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵)) |
25 | 24 | expr 642 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵))) |
26 | 25 | exlimdv 1901 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵))) |
27 | 26 | expimpd 628 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵))) |
28 | fz1f1o 14485 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) | |
29 | 28 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
30 | 12, 27, 29 | mpjaod 395 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ 𝐴 𝐵 = ((#‘𝐴) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∅c0 3948 {csn 4210 × cxp 5141 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 ℂcc 9972 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 ℕcn 11058 ...cfz 12364 seqcseq 12841 #chash 13157 Σcsu 14460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 |
This theorem is referenced by: fsumdifsnconst 14567 o1fsum 14589 hashiun 14598 hash2iun1dif1 14600 climcndslem1 14625 climcndslem2 14626 harmonic 14635 mertenslem1 14660 sumhash 15647 cshwshashnsame 15857 lagsubg2 17702 sylow2a 18080 lebnumlem3 22809 uniioombllem4 23400 birthdaylem2 24724 basellem8 24859 0sgm 24915 musum 24962 chtleppi 24980 vmasum 24986 logfac2 24987 chpval2 24988 chpchtsum 24989 chpub 24990 logfaclbnd 24992 dchrsum2 25038 sumdchr2 25040 lgsquadlem1 25150 chebbnd1lem1 25203 chtppilimlem1 25207 dchrmusum2 25228 dchrisum0flblem1 25242 rpvmasum2 25246 dchrisum0lem2a 25251 mudivsum 25264 mulogsumlem 25265 selberglem2 25280 pntlemj 25337 rusgrnumwwlks 26941 fusgrhashclwwlkn 27043 fusgreghash2wsp 27318 numclwwlk6 27377 reprlt 30825 hashreprin 30826 reprgt 30827 hgt750lema 30863 rrndstprj2 33760 stoweidlem11 40546 stoweidlem26 40561 stoweidlem38 40573 dirkertrigeq 40636 fourierdlem73 40714 etransclem32 40801 rrndistlt 40828 sge0rpcpnf 40956 hoiqssbllem2 41158 nn0mulfsum 42743 amgmlemALT 42877 |
Copyright terms: Public domain | W3C validator |