Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocopn Structured version   Visualization version   GIF version

Theorem iocopn 39154
Description: A left open right closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iocopn.a (𝜑𝐴 ∈ ℝ*)
iocopn.c (𝜑𝐶 ∈ ℝ*)
iocopn.b (𝜑𝐵 ∈ ℝ)
iocopn.k 𝐾 = (topGen‘ran (,))
iocopn.j 𝐽 = (𝐾t (𝐴(,]𝐵))
iocopn.alec (𝜑𝐴𝐶)
iocopn.6 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iocopn (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)

Proof of Theorem iocopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iocopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 22475 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2694 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovex 6632 . . . 4 (𝐴(,]𝐵) ∈ V
65a1i 11 . . 3 (𝜑 → (𝐴(,]𝐵) ∈ V)
7 iooretop 22479 . . . . 5 (𝐶(,)+∞) ∈ (topGen‘ran (,))
87, 1eleqtrri 2697 . . . 4 (𝐶(,)+∞) ∈ 𝐾
98a1i 11 . . 3 (𝜑 → (𝐶(,)+∞) ∈ 𝐾)
10 elrestr 16010 . . 3 ((𝐾 ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ 𝐾) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
114, 6, 9, 10syl3anc 1323 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
12 iocopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1312adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
14 iocopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
1514rexrd 10033 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
1615adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ*)
17 elinel1 3777 . . . . . . . 8 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
18 elioore 12147 . . . . . . . 8 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
1917, 18syl 17 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
2019rexrd 10033 . . . . . 6 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ*)
2120adantl 482 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ*)
22 pnfxr 10036 . . . . . . 7 +∞ ∈ ℝ*
2322a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
2417adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
25 ioogtlb 39125 . . . . . 6 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
2613, 23, 24, 25syl3anc 1323 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
27 iocopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
2827adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
29 elinel2 3778 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
3029adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
31 iocleub 39133 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,]𝐵)) → 𝑥𝐵)
3228, 16, 30, 31syl3anc 1323 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
3313, 16, 21, 26, 32eliocd 39138 . . . 4 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
3412adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
3522a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
36 iocopn.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
37 iocssre 12195 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶(,]𝐵) ⊆ ℝ)
3812, 36, 37syl2anc 692 . . . . . . 7 (𝜑 → (𝐶(,]𝐵) ⊆ ℝ)
3938sselda 3583 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
4015adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ*)
41 simpr 477 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
42 iocgtlb 39132 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4334, 40, 41, 42syl3anc 1323 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4439ltpnfd 11899 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
4534, 35, 39, 43, 44eliood 39128 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
4627adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
4739rexrd 10033 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ*)
48 iocopn.alec . . . . . . . 8 (𝜑𝐴𝐶)
4948adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
5046, 34, 47, 49, 43xrlelttrd 11935 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
51 iocleub 39133 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5234, 40, 41, 51syl3anc 1323 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5346, 40, 47, 50, 52eliocd 39138 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
5445, 53elind 3776 . . . 4 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
5533, 54impbida 876 . . 3 (𝜑 → (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ↔ 𝑥 ∈ (𝐶(,]𝐵)))
5655eqrdv 2619 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) = (𝐶(,]𝐵))
57 iocopn.j . . . 4 𝐽 = (𝐾t (𝐴(,]𝐵))
5857eqcomi 2630 . . 3 (𝐾t (𝐴(,]𝐵)) = 𝐽
5958a1i 11 . 2 (𝜑 → (𝐾t (𝐴(,]𝐵)) = 𝐽)
6011, 56, 593eltr3d 2712 1 (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cin 3554  wss 3555   class class class wbr 4613  ran crn 5075  cfv 5847  (class class class)co 6604  cr 9879  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019  (,)cioo 12117  (,]cioc 12118  t crest 16002  topGenctg 16019  Topctop 20617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-ioo 12121  df-ioc 12122  df-rest 16004  df-topgen 16025  df-top 20621  df-bases 20622
This theorem is referenced by:  fouriersw  39752
  Copyright terms: Public domain W3C validator