Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocopn Structured version   Visualization version   GIF version

Theorem iocopn 41816
Description: A left-open right-closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iocopn.a (𝜑𝐴 ∈ ℝ*)
iocopn.c (𝜑𝐶 ∈ ℝ*)
iocopn.b (𝜑𝐵 ∈ ℝ)
iocopn.k 𝐾 = (topGen‘ran (,))
iocopn.j 𝐽 = (𝐾t (𝐴(,]𝐵))
iocopn.alec (𝜑𝐴𝐶)
iocopn.6 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iocopn (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)

Proof of Theorem iocopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iocopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 23370 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2909 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovexd 7191 . . 3 (𝜑 → (𝐴(,]𝐵) ∈ V)
6 iooretop 23374 . . . . 5 (𝐶(,)+∞) ∈ (topGen‘ran (,))
76, 1eleqtrri 2912 . . . 4 (𝐶(,)+∞) ∈ 𝐾
87a1i 11 . . 3 (𝜑 → (𝐶(,)+∞) ∈ 𝐾)
9 elrestr 16702 . . 3 ((𝐾 ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ 𝐾) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
104, 5, 8, 9syl3anc 1367 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
11 iocopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1211adantr 483 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
13 iocopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
1413rexrd 10691 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
1514adantr 483 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ*)
16 elinel1 4172 . . . . . . . 8 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
17 elioore 12769 . . . . . . . 8 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
1918rexrd 10691 . . . . . 6 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ*)
2019adantl 484 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ*)
21 pnfxr 10695 . . . . . . 7 +∞ ∈ ℝ*
2221a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
2316adantl 484 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
24 ioogtlb 41790 . . . . . 6 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
2512, 22, 23, 24syl3anc 1367 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
26 iocopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
2726adantr 483 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
28 elinel2 4173 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
2928adantl 484 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
30 iocleub 41798 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,]𝐵)) → 𝑥𝐵)
3127, 15, 29, 30syl3anc 1367 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
3212, 15, 20, 25, 31eliocd 41803 . . . 4 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
3311adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
3421a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
35 iocopn.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
36 iocssre 12817 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶(,]𝐵) ⊆ ℝ)
3711, 35, 36syl2anc 586 . . . . . . 7 (𝜑 → (𝐶(,]𝐵) ⊆ ℝ)
3837sselda 3967 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
3914adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ*)
40 simpr 487 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
41 iocgtlb 41797 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4233, 39, 40, 41syl3anc 1367 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4338ltpnfd 12517 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
4433, 34, 38, 42, 43eliood 41793 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
4526adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
4638rexrd 10691 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ*)
47 iocopn.alec . . . . . . . 8 (𝜑𝐴𝐶)
4847adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
4945, 33, 46, 48, 42xrlelttrd 12554 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
50 iocleub 41798 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5133, 39, 40, 50syl3anc 1367 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5245, 39, 46, 49, 51eliocd 41803 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
5344, 52elind 4171 . . . 4 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
5432, 53impbida 799 . . 3 (𝜑 → (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ↔ 𝑥 ∈ (𝐶(,]𝐵)))
5554eqrdv 2819 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) = (𝐶(,]𝐵))
56 iocopn.j . . . 4 𝐽 = (𝐾t (𝐴(,]𝐵))
5756eqcomi 2830 . . 3 (𝐾t (𝐴(,]𝐵)) = 𝐽
5857a1i 11 . 2 (𝜑 → (𝐾t (𝐴(,]𝐵)) = 𝐽)
5910, 55, 583eltr3d 2927 1 (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  wss 3936   class class class wbr 5066  ran crn 5556  cfv 6355  (class class class)co 7156  cr 10536  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  (,)cioo 12739  (,]cioc 12740  t crest 16694  topGenctg 16711  Topctop 21501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-ioo 12743  df-ioc 12744  df-rest 16696  df-topgen 16717  df-top 21502  df-bases 21554
This theorem is referenced by:  fouriersw  42536
  Copyright terms: Public domain W3C validator