MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2i Structured version   Visualization version   GIF version

Theorem ip2i 28607
Description: Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip2i.8 𝐴𝑋
ip2i.9 𝐵𝑋
Assertion
Ref Expression
ip2i ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))

Proof of Theorem ip2i
StepHypRef Expression
1 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
21phnvi 28595 . . . . 5 𝑈 ∈ NrmCVec
3 ip2i.8 . . . . . 6 𝐴𝑋
4 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
5 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
64, 5nvgcl 28399 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝐺𝐴) ∈ 𝑋)
72, 3, 3, 6mp3an 1457 . . . . 5 (𝐴𝐺𝐴) ∈ 𝑋
8 ip2i.9 . . . . 5 𝐵𝑋
9 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
104, 9dipcl 28491 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ)
112, 7, 8, 10mp3an 1457 . . . 4 ((𝐴𝐺𝐴)𝑃𝐵) ∈ ℂ
1211addid1i 10829 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + 0) = ((𝐴𝐺𝐴)𝑃𝐵)
13 ip1i.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
14 eqid 2823 . . . . . . . 8 (0vec𝑈) = (0vec𝑈)
154, 5, 13, 14nvrinv 28430 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
162, 3, 15mp2an 690 . . . . . 6 (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈)
1716oveq1i 7168 . . . . 5 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵)
184, 14, 9dip0l 28497 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
192, 8, 18mp2an 690 . . . . 5 ((0vec𝑈)𝑃𝐵) = 0
2017, 19eqtri 2846 . . . 4 ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0
2120oveq2i 7169 . . 3 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (((𝐴𝐺𝐴)𝑃𝐵) + 0)
22 df-2 11703 . . . . . 6 2 = (1 + 1)
2322oveq1i 7168 . . . . 5 (2𝑆𝐴) = ((1 + 1)𝑆𝐴)
24 ax-1cn 10597 . . . . . . . 8 1 ∈ ℂ
2524, 24, 33pm3.2i 1335 . . . . . . 7 (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)
264, 5, 13nvdir 28410 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴)))
272, 25, 26mp2an 690 . . . . . 6 ((1 + 1)𝑆𝐴) = ((1𝑆𝐴)𝐺(1𝑆𝐴))
284, 13nvsid 28406 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
292, 3, 28mp2an 690 . . . . . . 7 (1𝑆𝐴) = 𝐴
3029, 29oveq12i 7170 . . . . . 6 ((1𝑆𝐴)𝐺(1𝑆𝐴)) = (𝐴𝐺𝐴)
3127, 30eqtri 2846 . . . . 5 ((1 + 1)𝑆𝐴) = (𝐴𝐺𝐴)
3223, 31eqtri 2846 . . . 4 (2𝑆𝐴) = (𝐴𝐺𝐴)
3332oveq1i 7168 . . 3 ((2𝑆𝐴)𝑃𝐵) = ((𝐴𝐺𝐴)𝑃𝐵)
3412, 21, 333eqtr4ri 2857 . 2 ((2𝑆𝐴)𝑃𝐵) = (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵))
354, 5, 13, 9, 1, 3, 3, 8ip1i 28606 . 2 (((𝐴𝐺𝐴)𝑃𝐵) + ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵)) = (2 · (𝐴𝑃𝐵))
3634, 35eqtri 2846 1 ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  -cneg 10873  2c2 11695  NrmCVeccnv 28363   +𝑣 cpv 28364  BaseSetcba 28365   ·𝑠OLD cns 28366  0veccn0v 28367  ·𝑖OLDcdip 28479  CPreHilOLDccphlo 28591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-nmcv 28379  df-dip 28480  df-ph 28592
This theorem is referenced by:  ipdirilem  28608
  Copyright terms: Public domain W3C validator