MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid1i Structured version   Visualization version   GIF version

Theorem addid1i 10827
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addid1i (𝐴 + 0) = 𝐴

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addid1 10820 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  (class class class)co 7156  cc 10535  0cc0 10537   + caddc 10540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680
This theorem is referenced by:  1p0e1  11762  9p1e10  12101  num0u  12110  numnncl2  12122  decrmanc  12156  decaddi  12159  decaddci  12160  decmul1  12163  decmulnc  12166  fsumrelem  15162  bpoly4  15413  demoivreALT  15554  decexp2  16411  decsplit0  16417  37prm  16454  43prm  16455  139prm  16457  163prm  16458  317prm  16459  631prm  16460  1259lem2  16465  1259lem3  16466  1259lem4  16467  1259lem5  16468  2503lem1  16470  2503lem2  16471  2503lem3  16472  4001lem1  16474  4001lem2  16475  4001lem3  16476  4001lem4  16477  sinhalfpilem  25049  efipi  25059  asin1  25472  log2ublem3  25526  log2ub  25527  emcllem6  25578  lgam1  25641  ip2i  28605  pythi  28627  normlem6  28892  normpythi  28919  normpari  28931  pjneli  29500  dp20u  30554  1mhdrd  30592  ballotth  31795  hgt750lemd  31919  hgt750lem2  31923  dirkertrigeqlem3  42405  fourierdlem103  42514  fourierdlem104  42515  fouriersw  42536  257prm  43743  fmtno4nprmfac193  43756  fmtno5faclem3  43763  fmtno5fac  43764  139prmALT  43779  127prm  43783  m11nprm  43786
  Copyright terms: Public domain W3C validator