![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isosctr | Structured version Visualization version GIF version |
Description: Isosceles triangle theorem. This is Metamath 100 proof #65. (Contributed by Saveliy Skresanov, 1-Jan-2017.) |
Ref | Expression |
---|---|
isosctrlem3.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
Ref | Expression |
---|---|
isosctr | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐶 − 𝐴)𝐹(𝐵 − 𝐴)) = ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1204 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐴 ∈ ℂ) | |
2 | simp13 1206 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐶 ∈ ℂ) | |
3 | 1, 2 | subcld 11633 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐴 − 𝐶) ∈ ℂ) |
4 | simp12 1205 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐵 ∈ ℂ) | |
5 | 4, 2 | subcld 11633 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐵 − 𝐶) ∈ ℂ) |
6 | simp21 1207 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐴 ≠ 𝐶) | |
7 | 1, 2, 6 | subne0d 11642 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐴 − 𝐶) ≠ 0) |
8 | simp22 1208 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐵 ≠ 𝐶) | |
9 | 4, 2, 8 | subne0d 11642 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐵 − 𝐶) ≠ 0) |
10 | simp23 1209 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → 𝐴 ≠ 𝐵) | |
11 | subcan2 11547 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | |
12 | 11 | 3ad2ant1 1134 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) |
13 | 12 | necon3bid 2986 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐴 − 𝐶) ≠ (𝐵 − 𝐶) ↔ 𝐴 ≠ 𝐵)) |
14 | 10, 13 | mpbird 257 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) |
15 | simp3 1139 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) | |
16 | isosctrlem3.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
17 | 16 | isosctrlem3 26895 | . . 3 ⊢ ((((𝐴 − 𝐶) ∈ ℂ ∧ (𝐵 − 𝐶) ∈ ℂ) ∧ ((𝐴 − 𝐶) ≠ 0 ∧ (𝐵 − 𝐶) ≠ 0 ∧ (𝐴 − 𝐶) ≠ (𝐵 − 𝐶)) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (-(𝐴 − 𝐶)𝐹((𝐵 − 𝐶) − (𝐴 − 𝐶))) = (((𝐴 − 𝐶) − (𝐵 − 𝐶))𝐹-(𝐵 − 𝐶))) |
18 | 3, 5, 7, 9, 14, 15, 17 | syl231anc 1392 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (-(𝐴 − 𝐶)𝐹((𝐵 − 𝐶) − (𝐴 − 𝐶))) = (((𝐴 − 𝐶) − (𝐵 − 𝐶))𝐹-(𝐵 − 𝐶))) |
19 | 1, 2 | negsubdi2d 11649 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → -(𝐴 − 𝐶) = (𝐶 − 𝐴)) |
20 | 4, 1, 2 | nnncan2d 11668 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐵 − 𝐶) − (𝐴 − 𝐶)) = (𝐵 − 𝐴)) |
21 | 19, 20 | oveq12d 7462 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (-(𝐴 − 𝐶)𝐹((𝐵 − 𝐶) − (𝐴 − 𝐶))) = ((𝐶 − 𝐴)𝐹(𝐵 − 𝐴))) |
22 | 1, 4, 2 | nnncan2d 11668 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
23 | 4, 2 | negsubdi2d 11649 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → -(𝐵 − 𝐶) = (𝐶 − 𝐵)) |
24 | 22, 23 | oveq12d 7462 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → (((𝐴 − 𝐶) − (𝐵 − 𝐶))𝐹-(𝐵 − 𝐶)) = ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) |
25 | 18, 21, 24 | 3eqtr3d 2786 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐶 − 𝐴)𝐹(𝐵 − 𝐴)) = ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∈ wcel 2109 ≠ wne 2941 ∖ cdif 3964 {csn 4639 ‘cfv 6575 (class class class)co 7444 ∈ cmpo 7446 ℂcc 11166 0cc0 11168 − cmin 11505 -cneg 11506 / cdiv 11933 ℑcim 15149 abscabs 15285 logclog 26628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1968 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2709 ax-rep 5293 ax-sep 5310 ax-nul 5320 ax-pow 5379 ax-pr 5446 ax-un 7767 ax-inf2 9694 ax-cnex 11224 ax-resscn 11225 ax-1cn 11226 ax-icn 11227 ax-addcl 11228 ax-addrcl 11229 ax-mulcl 11230 ax-mulrcl 11231 ax-mulcom 11232 ax-addass 11233 ax-mulass 11234 ax-distr 11235 ax-i2m1 11236 ax-1ne0 11237 ax-1rid 11238 ax-rnegex 11239 ax-rrecex 11240 ax-cnre 11241 ax-pre-lttri 11242 ax-pre-lttrn 11243 ax-pre-ltadd 11244 ax-pre-mulgt0 11245 ax-pre-sup 11246 ax-addf 11247 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2541 df-eu 2570 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2893 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3381 df-reu 3382 df-rab 3438 df-v 3484 df-sbc 3796 df-csb 3913 df-dif 3970 df-un 3972 df-in 3974 df-ss 3984 df-pss 3987 df-nul 4348 df-if 4540 df-pw 4615 df-sn 4640 df-pr 4642 df-tp 4644 df-op 4646 df-uni 4921 df-int 4960 df-iun 5006 df-iin 5007 df-br 5157 df-opab 5219 df-mpt 5240 df-tr 5274 df-id 5592 df-eprel 5598 df-po 5606 df-so 5607 df-fr 5651 df-se 5652 df-we 5653 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7401 df-ov 7447 df-oprab 7448 df-mpo 7449 df-of 7710 df-om 7901 df-1st 8028 df-2nd 8029 df-supp 8200 df-frecs 8320 df-wrecs 8351 df-recs 8425 df-rdg 8464 df-1o 8520 df-2o 8521 df-er 8759 df-map 8882 df-pm 8883 df-ixp 8952 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-fsupp 9415 df-fi 9464 df-sup 9495 df-inf 9496 df-oi 9563 df-card 9992 df-pnf 11310 df-mnf 11311 df-xr 11312 df-ltxr 11313 df-le 11314 df-sub 11507 df-neg 11508 df-div 11934 df-nn 12280 df-2 12342 df-3 12343 df-4 12344 df-5 12345 df-6 12346 df-7 12347 df-8 12348 df-9 12349 df-n0 12540 df-z 12627 df-dec 12747 df-uz 12892 df-q 13004 df-rp 13048 df-xneg 13167 df-xadd 13168 df-xmul 13169 df-ioo 13403 df-ioc 13404 df-ico 13405 df-icc 13406 df-fz 13560 df-fzo 13707 df-fl 13844 df-mod 13922 df-seq 14055 df-exp 14115 df-fac 14325 df-bc 14354 df-hash 14382 df-shft 15118 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-limsup 15519 df-clim 15536 df-rlim 15537 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-hom 17337 df-cco 17338 df-rest 17484 df-topn 17485 df-0g 17503 df-gsum 17504 df-topgen 17505 df-pt 17506 df-prds 17509 df-xrs 17564 df-qtop 17569 df-imas 17570 df-xps 17572 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18681 df-sgrp 18760 df-mnd 18776 df-submnd 18825 df-mulg 19114 df-cntz 19363 df-cmn 19830 df-psmet 21389 df-xmet 21390 df-met 21391 df-bl 21392 df-mopn 21393 df-fbas 21394 df-fg 21395 df-cnfld 21398 df-top 22931 df-topon 22948 df-topsp 22970 df-bases 22984 df-cld 23058 df-ntr 23059 df-cls 23060 df-nei 23137 df-lp 23175 df-perf 23176 df-cn 23266 df-cnp 23267 df-haus 23354 df-tx 23601 df-hmeo 23794 df-fil 23885 df-fm 23977 df-flim 23978 df-flf 23979 df-xms 24361 df-ms 24362 df-tms 24363 df-cncf 24935 df-limc 25933 df-dv 25934 df-log 26630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |