Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfass Structured version   Visualization version   GIF version

Theorem lcmfass 15283
 Description: Associative law for the lcm function. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
lcmfass (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm𝑍)})))

Proof of Theorem lcmfass
StepHypRef Expression
1 lcmfcl 15265 . . . . . 6 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℕ0)
21nn0zd 11424 . . . . 5 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm𝑌) ∈ ℤ)
3 lcmfsn 15272 . . . . 5 ((lcm𝑌) ∈ ℤ → (lcm‘{(lcm𝑌)}) = (abs‘(lcm𝑌)))
42, 3syl 17 . . . 4 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm𝑌)}) = (abs‘(lcm𝑌)))
5 nn0re 11245 . . . . . 6 ((lcm𝑌) ∈ ℕ0 → (lcm𝑌) ∈ ℝ)
6 nn0ge0 11262 . . . . . 6 ((lcm𝑌) ∈ ℕ0 → 0 ≤ (lcm𝑌))
75, 6jca 554 . . . . 5 ((lcm𝑌) ∈ ℕ0 → ((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)))
8 absid 13970 . . . . 5 (((lcm𝑌) ∈ ℝ ∧ 0 ≤ (lcm𝑌)) → (abs‘(lcm𝑌)) = (lcm𝑌))
91, 7, 83syl 18 . . . 4 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (abs‘(lcm𝑌)) = (lcm𝑌))
104, 9eqtrd 2655 . . 3 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (lcm‘{(lcm𝑌)}) = (lcm𝑌))
11 lcmfcl 15265 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) ∈ ℕ0)
1211nn0zd 11424 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) ∈ ℤ)
13 lcmfsn 15272 . . . . 5 ((lcm𝑍) ∈ ℤ → (lcm‘{(lcm𝑍)}) = (abs‘(lcm𝑍)))
1412, 13syl 17 . . . 4 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘{(lcm𝑍)}) = (abs‘(lcm𝑍)))
15 nn0re 11245 . . . . . 6 ((lcm𝑍) ∈ ℕ0 → (lcm𝑍) ∈ ℝ)
16 nn0ge0 11262 . . . . . 6 ((lcm𝑍) ∈ ℕ0 → 0 ≤ (lcm𝑍))
1715, 16jca 554 . . . . 5 ((lcm𝑍) ∈ ℕ0 → ((lcm𝑍) ∈ ℝ ∧ 0 ≤ (lcm𝑍)))
18 absid 13970 . . . . 5 (((lcm𝑍) ∈ ℝ ∧ 0 ≤ (lcm𝑍)) → (abs‘(lcm𝑍)) = (lcm𝑍))
1911, 17, 183syl 18 . . . 4 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (abs‘(lcm𝑍)) = (lcm𝑍))
2014, 19eqtr2d 2656 . . 3 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = (lcm‘{(lcm𝑍)}))
2110, 20oveqan12d 6623 . 2 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((lcm‘{(lcm𝑌)}) lcm (lcm𝑍)) = ((lcm𝑌) lcm (lcm‘{(lcm𝑍)})))
222snssd 4309 . . . 4 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → {(lcm𝑌)} ⊆ ℤ)
23 snfi 7982 . . . 4 {(lcm𝑌)} ∈ Fin
2422, 23jctir 560 . . 3 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → ({(lcm𝑌)} ⊆ ℤ ∧ {(lcm𝑌)} ∈ Fin))
25 lcmfun 15282 . . 3 ((({(lcm𝑌)} ⊆ ℤ ∧ {(lcm𝑌)} ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm𝑌)}) lcm (lcm𝑍)))
2624, 25sylan 488 . 2 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm𝑌)} ∪ 𝑍)) = ((lcm‘{(lcm𝑌)}) lcm (lcm𝑍)))
2712snssd 4309 . . . 4 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → {(lcm𝑍)} ⊆ ℤ)
28 snfi 7982 . . . 4 {(lcm𝑍)} ∈ Fin
2927, 28jctir 560 . . 3 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ({(lcm𝑍)} ⊆ ℤ ∧ {(lcm𝑍)} ∈ Fin))
30 lcmfun 15282 . . 3 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ ({(lcm𝑍)} ⊆ ℤ ∧ {(lcm𝑍)} ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm𝑍)})) = ((lcm𝑌) lcm (lcm‘{(lcm𝑍)})))
3129, 30sylan2 491 . 2 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌 ∪ {(lcm𝑍)})) = ((lcm𝑌) lcm (lcm‘{(lcm𝑍)})))
3221, 26, 313eqtr4d 2665 1 (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm𝑍)})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ∪ cun 3553   ⊆ wss 3555  {csn 4148   class class class wbr 4613  ‘cfv 5847  (class class class)co 6604  Fincfn 7899  ℝcr 9879  0cc0 9880   ≤ cle 10019  ℕ0cn0 11236  ℤcz 11321  abscabs 13908   lcm clcm 15225  lcmclcmf 15226 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-prod 14561  df-dvds 14908  df-gcd 15141  df-lcm 15227  df-lcmf 15228 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator