Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linevalexample Structured version   Visualization version   GIF version

Theorem linevalexample 41469
 Description: The polynomial 𝑥 − 3 over ℤ evaluated for 𝑥 = 5 results in 2. (Contributed by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
linevalexample.p 𝑃 = (Poly1‘ℤring)
linevalexample.b 𝐵 = (Base‘𝑃)
linevalexample.x 𝑋 = (var1‘ℤring)
linevalexample.m = (-g𝑃)
linevalexample.a 𝐴 = (algSc‘𝑃)
linevalexample.g 𝐺 = (𝑋 (𝐴‘3))
linevalexample.o 𝑂 = (eval1‘ℤring)
Assertion
Ref Expression
linevalexample ((𝑂‘(𝑋 (𝐴‘3)))‘5) = 2

Proof of Theorem linevalexample
StepHypRef Expression
1 zringcrng 19739 . . 3 ring ∈ CRing
2 linevalexample.p . . . 4 𝑃 = (Poly1‘ℤring)
3 linevalexample.b . . . 4 𝐵 = (Base‘𝑃)
4 zringbas 19743 . . . 4 ℤ = (Base‘ℤring)
5 linevalexample.x . . . 4 𝑋 = (var1‘ℤring)
6 linevalexample.m . . . 4 = (-g𝑃)
7 linevalexample.a . . . 4 𝐴 = (algSc‘𝑃)
8 eqid 2621 . . . 4 (𝑋 (𝐴‘3)) = (𝑋 (𝐴‘3))
9 3z 11354 . . . . 5 3 ∈ ℤ
109a1i 11 . . . 4 (ℤring ∈ CRing → 3 ∈ ℤ)
11 linevalexample.o . . . 4 𝑂 = (eval1‘ℤring)
12 id 22 . . . 4 (ℤring ∈ CRing → ℤring ∈ CRing)
13 5nn0 11256 . . . . . 6 5 ∈ ℕ0
1413nn0zi 11346 . . . . 5 5 ∈ ℤ
1514a1i 11 . . . 4 (ℤring ∈ CRing → 5 ∈ ℤ)
162, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15lineval 41467 . . 3 (ℤring ∈ CRing → ((𝑂‘(𝑋 (𝐴‘3)))‘5) = (5(-g‘ℤring)3))
171, 16ax-mp 5 . 2 ((𝑂‘(𝑋 (𝐴‘3)))‘5) = (5(-g‘ℤring)3)
18 eqid 2621 . . . 4 (-g‘ℤring) = (-g‘ℤring)
1918zringsubgval 41468 . . 3 ((5 ∈ ℤ ∧ 3 ∈ ℤ) → (5 − 3) = (5(-g‘ℤring)3))
2014, 9, 19mp2an 707 . 2 (5 − 3) = (5(-g‘ℤring)3)
21 5cn 11044 . . 3 5 ∈ ℂ
22 3cn 11039 . . 3 3 ∈ ℂ
23 2cn 11035 . . 3 2 ∈ ℂ
24 3p2e5 11104 . . 3 (3 + 2) = 5
2521, 22, 23, 24subaddrii 10314 . 2 (5 − 3) = 2
2617, 20, 253eqtr2i 2649 1 ((𝑂‘(𝑋 (𝐴‘3)))‘5) = 2
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480   ∈ wcel 1987  ‘cfv 5847  (class class class)co 6604   − cmin 10210  2c2 11014  3c3 11015  5c5 11017  ℤcz 11321  Basecbs 15781  -gcsg 17345  CRingccrg 18469  algSccascl 19230  var1cv1 19465  Poly1cpl1 19466  eval1ce1 19598  ℤringzring 19737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-srg 18427  df-ring 18470  df-cring 18471  df-rnghom 18636  df-subrg 18699  df-lmod 18786  df-lss 18852  df-lsp 18891  df-assa 19231  df-asp 19232  df-ascl 19233  df-psr 19275  df-mvr 19276  df-mpl 19277  df-opsr 19279  df-evls 19425  df-evl 19426  df-psr1 19469  df-vr1 19470  df-ply1 19471  df-evl1 19600  df-cnfld 19666  df-zring 19738 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator