MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0zi Structured version   Visualization version   GIF version

Theorem nn0zi 11346
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
nn0zi.1 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0zi 𝑁 ∈ ℤ

Proof of Theorem nn0zi
StepHypRef Expression
1 nn0ssz 11342 . 2 0 ⊆ ℤ
2 nn0zi.1 . 2 𝑁 ∈ ℕ0
31, 2sselii 3580 1 𝑁 ∈ ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 1987  0cn0 11236  cz 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322
This theorem is referenced by:  le9lt10  11473  declecOLD  11488  expnass  12910  faclbnd4lem1  13020  efsep  14765  3dvdsdec  14978  3dvdsdecOLD  14979  3dvds2dec  14980  3dvds2decOLD  14981  divalglem0  15040  divalglem2  15042  ndvdsi  15060  gcdaddmlem  15169  6lcm4e12  15253  phicl2  15397  dec2dvds  15691  dec5dvds2  15693  modxai  15696  mod2xnegi  15699  gcdi  15701  gcdmodi  15702  1259lem1  15762  1259lem2  15763  1259lem3  15764  1259lem4  15765  1259lem5  15766  2503lem1  15768  2503lem2  15769  2503lem3  15770  4001lem1  15772  4001lem2  15773  4001lem3  15774  4001lem4  15775  strlemor1OLD  15890  ppi1i  24794  ppi2i  24795  ppiublem1  24827  konigsberglem5  26984  ballotlemfelz  30330  poimirlem26  33064  poimirlem28  33066  fmtno4prmfac  40780  31prm  40808  linevalexample  41469
  Copyright terms: Public domain W3C validator