MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem5 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem5 20813
Description: Lemma 5 for mp2pm2mp 20814. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
mp2pm2mplem5.m = ( ·𝑠𝑄)
mp2pm2mplem5.e = (.g‘(mulGrp‘𝑄))
mp2pm2mplem5.x 𝑋 = (var1𝐴)
Assertion
Ref Expression
mp2pm2mplem5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝑌   ,𝑘
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   (𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)   (𝑖,𝑗,𝑝)   𝑋(𝑖,𝑗,𝑘,𝑝)

Proof of Theorem mp2pm2mplem5
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nn0ex 11486 . . 3 0 ∈ V
21a1i 11 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → ℕ0 ∈ V)
3 mp2pm2mp.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43matring 20447 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
5 mp2pm2mp.q . . . . 5 𝑄 = (Poly1𝐴)
65ply1lmod 19820 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
74, 6syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
873adant3 1127 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑄 ∈ LMod)
943adant3 1127 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝐴 ∈ Ring)
105ply1sca 19821 . . 3 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
119, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝐴 = (Scalar‘𝑄))
12 mp2pm2mp.l . 2 𝐿 = (Base‘𝑄)
13 simpl2 1230 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
14 mp2pm2mplem2.p . . . . 5 𝑃 = (Poly1𝑅)
15 mp2pm2mp.m . . . . 5 · = ( ·𝑠𝑃)
16 mp2pm2mp.e . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
17 mp2pm2mp.y . . . . 5 𝑌 = (var1𝑅)
18 mp2pm2mp.i . . . . 5 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
19 eqid 2756 . . . . 5 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
20 eqid 2756 . . . . 5 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
213, 5, 12, 14, 15, 16, 17, 18, 19, 20mply1topmatcl 20808 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
2221adantr 472 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
23 simpr 479 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
24 eqid 2756 . . . 4 (Base‘𝐴) = (Base‘𝐴)
2514, 19, 20, 3, 24decpmatcl 20770 . . 3 ((𝑅 ∈ Ring ∧ (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)) ∧ 𝑘 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑘) ∈ (Base‘𝐴))
2613, 22, 23, 25syl3anc 1477 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑘) ∈ (Base‘𝐴))
27 mp2pm2mplem5.x . . . 4 𝑋 = (var1𝐴)
28 eqid 2756 . . . 4 (mulGrp‘𝑄) = (mulGrp‘𝑄)
29 mp2pm2mplem5.e . . . 4 = (.g‘(mulGrp‘𝑄))
305, 27, 28, 29, 12ply1moncl 19839 . . 3 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
319, 30sylan 489 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
32 eqid 2756 . 2 (0g𝑄) = (0g𝑄)
33 eqid 2756 . 2 (0g𝐴) = (0g𝐴)
34 mp2pm2mplem5.m . 2 = ( ·𝑠𝑄)
35 fveq2 6348 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → ((coe1𝑝)‘𝑘) = ((coe1𝑝)‘𝑙))
3635oveqd 6826 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑝)‘𝑙)𝑗))
37 oveq1 6816 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘𝐸𝑌) = (𝑙𝐸𝑌))
3836, 37oveq12d 6827 . . . . . . . . . . 11 (𝑘 = 𝑙 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))
3938cbvmptv 4898 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))
4039oveq2i 6820 . . . . . . . . 9 (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌))))
4140a1i 11 . . . . . . . 8 ((𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))))
4241mpt2eq3ia 6881 . . . . . . 7 (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))))
4342mpteq2i 4889 . . . . . 6 (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌))))))
4418, 43eqtri 2778 . . . . 5 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌))))))
453, 5, 12, 15, 16, 17, 44, 14mp2pm2mplem4 20812 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑘) = ((coe1𝑂)‘𝑘))
4645mpteq2dva 4892 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((𝐼𝑂) decompPMat 𝑘)) = (𝑘 ∈ ℕ0 ↦ ((coe1𝑂)‘𝑘)))
475, 12, 33mptcoe1fsupp 19783 . . . 4 ((𝐴 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑂)‘𝑘)) finSupp (0g𝐴))
484, 47stoic3 1846 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑂)‘𝑘)) finSupp (0g𝐴))
4946, 48eqbrtrd 4822 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((𝐼𝑂) decompPMat 𝑘)) finSupp (0g𝐴))
502, 8, 11, 12, 26, 31, 32, 33, 34, 49mptscmfsupp0 19126 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1628  wcel 2135  Vcvv 3336   class class class wbr 4800  cmpt 4877  cfv 6045  (class class class)co 6809  cmpt2 6811  Fincfn 8117   finSupp cfsupp 8436  0cn0 11480  Basecbs 16055  Scalarcsca 16142   ·𝑠 cvsca 16143  0gc0g 16298   Σg cgsu 16299  .gcmg 17737  mulGrpcmgp 18685  Ringcrg 18743  LModclmod 19061  var1cv1 19744  Poly1cpl1 19745  coe1cco1 19746   Mat cmat 20411   decompPMat cdecpmat 20765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-ot 4326  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-of 7058  df-ofr 7059  df-om 7227  df-1st 7329  df-2nd 7330  df-supp 7460  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-oadd 7729  df-er 7907  df-map 8021  df-pm 8022  df-ixp 8071  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fsupp 8437  df-sup 8509  df-oi 8576  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-fz 12516  df-fzo 12656  df-seq 12992  df-hash 13308  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-mulr 16153  df-sca 16155  df-vsca 16156  df-ip 16157  df-tset 16158  df-ple 16159  df-ds 16162  df-hom 16164  df-cco 16165  df-0g 16300  df-gsum 16301  df-prds 16306  df-pws 16308  df-mre 16444  df-mrc 16445  df-acs 16447  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-mhm 17532  df-submnd 17533  df-grp 17622  df-minusg 17623  df-sbg 17624  df-mulg 17738  df-subg 17788  df-ghm 17855  df-cntz 17946  df-cmn 18391  df-abl 18392  df-mgp 18686  df-ur 18698  df-ring 18745  df-subrg 18976  df-lmod 19063  df-lss 19131  df-sra 19370  df-rgmod 19371  df-psr 19554  df-mvr 19555  df-mpl 19556  df-opsr 19558  df-psr1 19748  df-vr1 19749  df-ply1 19750  df-coe1 19751  df-dsmm 20274  df-frlm 20289  df-mamu 20388  df-mat 20412  df-decpmat 20766
This theorem is referenced by:  mp2pm2mp  20814
  Copyright terms: Public domain W3C validator