MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem5 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem5 21418
Description: Lemma 5 for mp2pm2mp 21419. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
mp2pm2mplem5.m = ( ·𝑠𝑄)
mp2pm2mplem5.e = (.g‘(mulGrp‘𝑄))
mp2pm2mplem5.x 𝑋 = (var1𝐴)
Assertion
Ref Expression
mp2pm2mplem5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝑌   ,𝑘
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   (𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)   (𝑖,𝑗,𝑝)   𝑋(𝑖,𝑗,𝑘,𝑝)

Proof of Theorem mp2pm2mplem5
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nn0ex 11904 . . 3 0 ∈ V
21a1i 11 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → ℕ0 ∈ V)
3 mp2pm2mp.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43matring 21052 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
5 mp2pm2mp.q . . . . 5 𝑄 = (Poly1𝐴)
65ply1lmod 20420 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
74, 6syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
873adant3 1128 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑄 ∈ LMod)
943adant3 1128 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝐴 ∈ Ring)
105ply1sca 20421 . . 3 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
119, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝐴 = (Scalar‘𝑄))
12 mp2pm2mp.l . 2 𝐿 = (Base‘𝑄)
13 simpl2 1188 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
14 mp2pm2mplem2.p . . . . 5 𝑃 = (Poly1𝑅)
15 mp2pm2mp.m . . . . 5 · = ( ·𝑠𝑃)
16 mp2pm2mp.e . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
17 mp2pm2mp.y . . . . 5 𝑌 = (var1𝑅)
18 mp2pm2mp.i . . . . 5 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
19 eqid 2821 . . . . 5 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
20 eqid 2821 . . . . 5 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
213, 5, 12, 14, 15, 16, 17, 18, 19, 20mply1topmatcl 21413 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
2221adantr 483 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)))
23 simpr 487 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
24 eqid 2821 . . . 4 (Base‘𝐴) = (Base‘𝐴)
2514, 19, 20, 3, 24decpmatcl 21375 . . 3 ((𝑅 ∈ Ring ∧ (𝐼𝑂) ∈ (Base‘(𝑁 Mat 𝑃)) ∧ 𝑘 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑘) ∈ (Base‘𝐴))
2613, 22, 23, 25syl3anc 1367 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑘) ∈ (Base‘𝐴))
27 mp2pm2mplem5.x . . . 4 𝑋 = (var1𝐴)
28 eqid 2821 . . . 4 (mulGrp‘𝑄) = (mulGrp‘𝑄)
29 mp2pm2mplem5.e . . . 4 = (.g‘(mulGrp‘𝑄))
305, 27, 28, 29, 12ply1moncl 20439 . . 3 ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
319, 30sylan 582 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐿)
32 eqid 2821 . 2 (0g𝑄) = (0g𝑄)
33 eqid 2821 . 2 (0g𝐴) = (0g𝐴)
34 mp2pm2mplem5.m . 2 = ( ·𝑠𝑄)
35 fveq2 6670 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → ((coe1𝑝)‘𝑘) = ((coe1𝑝)‘𝑙))
3635oveqd 7173 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑝)‘𝑙)𝑗))
37 oveq1 7163 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘𝐸𝑌) = (𝑙𝐸𝑌))
3836, 37oveq12d 7174 . . . . . . . . . . 11 (𝑘 = 𝑙 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))
3938cbvmptv 5169 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))
4039oveq2i 7167 . . . . . . . . 9 (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌))))
4140a1i 11 . . . . . . . 8 ((𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))))
4241mpoeq3ia 7232 . . . . . . 7 (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌)))))
4342mpteq2i 5158 . . . . . 6 (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌))))))
4418, 43eqtri 2844 . . . . 5 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑙 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑙)𝑗) · (𝑙𝐸𝑌))))))
453, 5, 12, 15, 16, 17, 44, 14mp2pm2mplem4 21417 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑘 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝑘) = ((coe1𝑂)‘𝑘))
4645mpteq2dva 5161 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((𝐼𝑂) decompPMat 𝑘)) = (𝑘 ∈ ℕ0 ↦ ((coe1𝑂)‘𝑘)))
475, 12, 33mptcoe1fsupp 20383 . . . 4 ((𝐴 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑂)‘𝑘)) finSupp (0g𝐴))
484, 47stoic3 1777 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑂)‘𝑘)) finSupp (0g𝐴))
4946, 48eqbrtrd 5088 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ ((𝐼𝑂) decompPMat 𝑘)) finSupp (0g𝐴))
502, 8, 11, 12, 26, 31, 32, 33, 34, 49mptscmfsupp0 19699 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑘 ∈ ℕ0 ↦ (((𝐼𝑂) decompPMat 𝑘) (𝑘 𝑋))) finSupp (0g𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cmpo 7158  Fincfn 8509   finSupp cfsupp 8833  0cn0 11898  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713   Σg cgsu 16714  .gcmg 18224  mulGrpcmgp 19239  Ringcrg 19297  LModclmod 19634  var1cv1 20344  Poly1cpl1 20345  coe1cco1 20346   Mat cmat 21016   decompPMat cdecpmat 21370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-dsmm 20876  df-frlm 20891  df-mamu 20995  df-mat 21017  df-decpmat 21371
This theorem is referenced by:  mp2pm2mp  21419
  Copyright terms: Public domain W3C validator