HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normgt0 Structured version   Visualization version   GIF version

Theorem normgt0 28904
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
normgt0 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))

Proof of Theorem normgt0
StepHypRef Expression
1 hiidrcl 28872 . . . . . 6 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
21adantr 483 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
3 ax-his4 28862 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
4 sqrtgt0 14618 . . . . 5 (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴)))
52, 3, 4syl2anc 586 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (√‘(𝐴 ·ih 𝐴)))
65ex 415 . . 3 (𝐴 ∈ ℋ → (𝐴 ≠ 0 → 0 < (√‘(𝐴 ·ih 𝐴))))
7 oveq1 7163 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ·ih 𝐴) = (0 ·ih 𝐴))
8 hi01 28873 . . . . . . . . 9 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
97, 8sylan9eqr 2878 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (𝐴 ·ih 𝐴) = 0)
109fveq2d 6674 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (√‘(𝐴 ·ih 𝐴)) = (√‘0))
11 sqrt0 14601 . . . . . . 7 (√‘0) = 0
1210, 11syl6eq 2872 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (√‘(𝐴 ·ih 𝐴)) = 0)
1312ex 415 . . . . 5 (𝐴 ∈ ℋ → (𝐴 = 0 → (√‘(𝐴 ·ih 𝐴)) = 0))
14 hiidge0 28875 . . . . . . . 8 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
151, 14resqrtcld 14777 . . . . . . 7 (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ)
16 0re 10643 . . . . . . 7 0 ∈ ℝ
17 lttri3 10724 . . . . . . 7 (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴)))))
1815, 16, 17sylancl 588 . . . . . 6 (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴)))))
19 simpr 487 . . . . . 6 ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))
2018, 19syl6bi 255 . . . . 5 (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴))))
2113, 20syld 47 . . . 4 (𝐴 ∈ ℋ → (𝐴 = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴))))
2221necon2ad 3031 . . 3 (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0))
236, 22impbid 214 . 2 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (√‘(𝐴 ·ih 𝐴))))
24 normval 28901 . . 3 (𝐴 ∈ ℋ → (norm𝐴) = (√‘(𝐴 ·ih 𝐴)))
2524breq2d 5078 . 2 (𝐴 ∈ ℋ → (0 < (norm𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴))))
2623, 25bitr4d 284 1 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   < clt 10675  csqrt 14592  chba 28696   ·ih csp 28699  normcno 28700  0c0v 28701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-hv0cl 28780  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his3 28861  ax-his4 28862
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-hnorm 28745
This theorem is referenced by:  norm-i  28906  norm1  29026  nmlnop0iALT  29772  nmbdoplbi  29801  nmcoplbi  29805  nmbdfnlbi  29826  nmcfnlbi  29829  branmfn  29882  strlem1  30027
  Copyright terms: Public domain W3C validator