![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normgt0 | Structured version Visualization version GIF version |
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normgt0 | ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hiidrcl 28182 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
2 | 1 | adantr 472 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (𝐴 ·ih 𝐴) ∈ ℝ) |
3 | ax-his4 28172 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | |
4 | sqrtgt0 14119 | . . . . 5 ⊢ (((𝐴 ·ih 𝐴) ∈ ℝ ∧ 0 < (𝐴 ·ih 𝐴)) → 0 < (√‘(𝐴 ·ih 𝐴))) | |
5 | 2, 3, 4 | syl2anc 696 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (√‘(𝐴 ·ih 𝐴))) |
6 | 5 | ex 449 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ → 0 < (√‘(𝐴 ·ih 𝐴)))) |
7 | oveq1 6772 | . . . . . . . . 9 ⊢ (𝐴 = 0ℎ → (𝐴 ·ih 𝐴) = (0ℎ ·ih 𝐴)) | |
8 | hi01 28183 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) | |
9 | 7, 8 | sylan9eqr 2780 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (𝐴 ·ih 𝐴) = 0) |
10 | 9 | fveq2d 6308 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = (√‘0)) |
11 | sqrt0 14102 | . . . . . . 7 ⊢ (√‘0) = 0 | |
12 | 10, 11 | syl6eq 2774 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) → (√‘(𝐴 ·ih 𝐴)) = 0) |
13 | 12 | ex 449 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → (√‘(𝐴 ·ih 𝐴)) = 0)) |
14 | hiidge0 28185 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) | |
15 | 1, 14 | resqrtcld 14276 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (√‘(𝐴 ·ih 𝐴)) ∈ ℝ) |
16 | 0re 10153 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
17 | lttri3 10234 | . . . . . . 7 ⊢ (((√‘(𝐴 ·ih 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) | |
18 | 15, 16, 17 | sylancl 697 | . . . . . 6 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 ↔ (¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))))) |
19 | simpr 479 | . . . . . 6 ⊢ ((¬ (√‘(𝐴 ·ih 𝐴)) < 0 ∧ ¬ 0 < (√‘(𝐴 ·ih 𝐴))) → ¬ 0 < (√‘(𝐴 ·ih 𝐴))) | |
20 | 18, 19 | syl6bi 243 | . . . . 5 ⊢ (𝐴 ∈ ℋ → ((√‘(𝐴 ·ih 𝐴)) = 0 → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
21 | 13, 20 | syld 47 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 = 0ℎ → ¬ 0 < (√‘(𝐴 ·ih 𝐴)))) |
22 | 21 | necon2ad 2911 | . . 3 ⊢ (𝐴 ∈ ℋ → (0 < (√‘(𝐴 ·ih 𝐴)) → 𝐴 ≠ 0ℎ)) |
23 | 6, 22 | impbid 202 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
24 | normval 28211 | . . 3 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | |
25 | 24 | breq2d 4772 | . 2 ⊢ (𝐴 ∈ ℋ → (0 < (normℎ‘𝐴) ↔ 0 < (√‘(𝐴 ·ih 𝐴)))) |
26 | 23, 25 | bitr4d 271 | 1 ⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ ↔ 0 < (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 ℝcr 10048 0cc0 10049 < clt 10187 √csqrt 14093 ℋchil 28006 ·ih csp 28009 normℎcno 28010 0ℎc0v 28011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-hv0cl 28090 ax-hvmul0 28097 ax-hfi 28166 ax-his1 28169 ax-his3 28171 ax-his4 28172 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-sup 8464 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-n0 11406 df-z 11491 df-uz 11801 df-rp 11947 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-hnorm 28055 |
This theorem is referenced by: norm-i 28216 norm1 28336 nmlnop0iALT 29084 nmbdoplbi 29113 nmcoplbi 29117 nmbdfnlbi 29138 nmcfnlbi 29141 branmfn 29194 strlem1 29339 |
Copyright terms: Public domain | W3C validator |