Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onetansqsecsq Structured version   Visualization version   GIF version

Theorem onetansqsecsq 43007
Description: Prove the tangent squared secant squared identity (1 + ((tan A ) ^ 2 ) ) = ( ( sec 𝐴)↑2)). (Contributed by David A. Wheeler, 25-May-2015.)
Assertion
Ref Expression
onetansqsecsq ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))

Proof of Theorem onetansqsecsq
StepHypRef Expression
1 coscl 15048 . . . . . . . . . 10 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2 sqeq0 13113 . . . . . . . . . 10 ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
31, 2syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
43necon3bid 2968 . . . . . . . 8 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
54biimpar 503 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0)
61sqcld 13192 . . . . . . . 8 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
7 divid 10898 . . . . . . . 8 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
86, 7sylan 489 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
95, 8syldan 488 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
109eqcomd 2758 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 = (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)))
11 tanval 15049 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
1211oveq1d 6820 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2))
13 2nn0 11493 . . . . . . . . . 10 2 ∈ ℕ0
14 sincl 15047 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
15 expdiv 13097 . . . . . . . . . . 11 (((sin‘𝐴) ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1614, 15syl3an1 1166 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1713, 16mp3an3 1554 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
18173impb 1107 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
191, 18syl3an2 1167 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
20193anidm12 1524 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2112, 20eqtrd 2786 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2210, 21oveq12d 6823 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2314sqcld 13192 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
24 divdir 10894 . . . . . . . . . . 11 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
256, 24syl3an1 1166 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2623, 25syl3an2 1167 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
27263anidm12 1524 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
28273impb 1107 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
296, 28syl3an2 1167 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
30293anidm12 1524 . . . . 5 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
315, 30syldan 488 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
3222, 31eqtr4d 2789 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)))
3323, 6addcomd 10422 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
34 sincossq 15097 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
3533, 34eqtr3d 2788 . . . . 5 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)
3635oveq1d 6820 . . . 4 (𝐴 ∈ ℂ → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3736adantr 472 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3832, 37eqtrd 2786 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
39 secval 42993 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))
4039oveq1d 6820 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = ((1 / (cos‘𝐴))↑2))
41 ax-1cn 10178 . . . . . 6 1 ∈ ℂ
42 expdiv 13097 . . . . . 6 ((1 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
4341, 13, 42mp3an13 1556 . . . . 5 (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
441, 43sylan 489 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
45 sq1 13144 . . . . 5 (1↑2) = 1
4645oveq1i 6815 . . . 4 ((1↑2) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2))
4744, 46syl6eq 2802 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = (1 / ((cos‘𝐴)↑2)))
4840, 47eqtrd 2786 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = (1 / ((cos‘𝐴)↑2)))
4938, 48eqtr4d 2789 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wne 2924  cfv 6041  (class class class)co 6805  cc 10118  0cc0 10120  1c1 10121   + caddc 10123   / cdiv 10868  2c2 11254  0cn0 11476  cexp 13046  sincsin 14985  cosccos 14986  tanctan 14987  seccsec 42987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-ico 12366  df-fz 12512  df-fzo 12652  df-fl 12779  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-sum 14608  df-ef 14989  df-sin 14991  df-cos 14992  df-tan 14993  df-sec 42990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator