MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Structured version   Visualization version   GIF version

Theorem opsrtoslem2 19479
Description: Lemma for opsrtos 19480. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem2 (𝜑𝑂 ∈ Toset)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.d . . . . . . . 8 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
2 ovex 6675 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
31, 2rabex2 4813 . . . . . . 7 𝐷 ∈ V
4 opsrtoslem.c . . . . . . . 8 𝐶 = (𝑇 <bag 𝐼)
5 opsrso.i . . . . . . . 8 (𝜑𝐼𝑉)
6 xpexg 6957 . . . . . . . . . 10 ((𝐼𝑉𝐼𝑉) → (𝐼 × 𝐼) ∈ V)
75, 5, 6syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐼 × 𝐼) ∈ V)
8 opsrso.t . . . . . . . . 9 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
97, 8ssexd 4803 . . . . . . . 8 (𝜑𝑇 ∈ V)
10 opsrso.w . . . . . . . 8 (𝜑𝑇 We 𝐼)
114, 1, 5, 9, 10ltbwe 19466 . . . . . . 7 (𝜑𝐶 We 𝐷)
12 opsrso.r . . . . . . . . 9 (𝜑𝑅 ∈ Toset)
13 eqid 2621 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2621 . . . . . . . . . . 11 (le‘𝑅) = (le‘𝑅)
15 opsrtoslem.q . . . . . . . . . . 11 < = (lt‘𝑅)
1613, 14, 15tosso 17030 . . . . . . . . . 10 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅))))
1716ibi 256 . . . . . . . . 9 (𝑅 ∈ Toset → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1812, 17syl 17 . . . . . . . 8 (𝜑 → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1918simpld 475 . . . . . . 7 (𝜑< Or (Base‘𝑅))
20 opsrtoslem.ps . . . . . . . . 9 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
2120opabbii 4715 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2221wemapso 8453 . . . . . . 7 ((𝐷 ∈ V ∧ 𝐶 We 𝐷< Or (Base‘𝑅)) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))
233, 11, 19, 22mp3an2i 1428 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))
24 opsrtoslem.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
25 opsrtoslem.b . . . . . . . 8 𝐵 = (Base‘𝑆)
2624, 13, 1, 25, 5psrbas 19372 . . . . . . 7 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
27 soeq2 5053 . . . . . . 7 (𝐵 = ((Base‘𝑅) ↑𝑚 𝐷) → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)))
2826, 27syl 17 . . . . . 6 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)))
2923, 28mpbird 247 . . . . 5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵)
30 soinxp 5181 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
3129, 30sylib 208 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
32 opsrso.o . . . . . . . 8 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
33 fvex 6199 . . . . . . . 8 ((𝐼 ordPwSer 𝑅)‘𝑇) ∈ V
3432, 33eqeltri 2696 . . . . . . 7 𝑂 ∈ V
35 opsrtoslem.l . . . . . . . 8 = (le‘𝑂)
36 eqid 2621 . . . . . . . 8 (lt‘𝑂) = (lt‘𝑂)
3735, 36pltfval 16953 . . . . . . 7 (𝑂 ∈ V → (lt‘𝑂) = ( ∖ I ))
3834, 37ax-mp 5 . . . . . 6 (lt‘𝑂) = ( ∖ I )
39 difundir 3878 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I ))
40 resss 5420 . . . . . . . . . 10 ( I ↾ 𝐵) ⊆ I
41 ssdif0 3940 . . . . . . . . . 10 (( I ↾ 𝐵) ⊆ I ↔ (( I ↾ 𝐵) ∖ I ) = ∅)
4240, 41mpbi 220 . . . . . . . . 9 (( I ↾ 𝐵) ∖ I ) = ∅
4342uneq2i 3762 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅)
44 un0 3965 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4539, 43, 443eqtri 2647 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4632, 5, 12, 8, 10, 24, 25, 15, 4, 1, 20, 35opsrtoslem1 19478 . . . . . . . 8 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
4746difeq1d 3725 . . . . . . 7 (𝜑 → ( ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ))
48 inss2 3832 . . . . . . . . . . . 12 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
49 relxp 5225 . . . . . . . . . . . 12 Rel (𝐵 × 𝐵)
50 relss 5204 . . . . . . . . . . . 12 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
5148, 49, 50mp2 9 . . . . . . . . . . 11 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))
5251a1i 11 . . . . . . . . . 10 (𝜑 → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
53 df-br 4652 . . . . . . . . . . . . . 14 (𝑎 I 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ I )
54 vex 3201 . . . . . . . . . . . . . . 15 𝑏 ∈ V
5554ideq 5272 . . . . . . . . . . . . . 14 (𝑎 I 𝑏𝑎 = 𝑏)
5653, 55bitr3i 266 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ I ↔ 𝑎 = 𝑏)
57 brin 4702 . . . . . . . . . . . . . . . . . 18 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ (𝑎{⟨𝑥, 𝑦⟩ ∣ 𝜓}𝑎𝑎(𝐵 × 𝐵)𝑎))
5857simprbi 480 . . . . . . . . . . . . . . . . 17 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎(𝐵 × 𝐵)𝑎)
59 brxp 5145 . . . . . . . . . . . . . . . . . 18 (𝑎(𝐵 × 𝐵)𝑎 ↔ (𝑎𝐵𝑎𝐵))
6059simprbi 480 . . . . . . . . . . . . . . . . 17 (𝑎(𝐵 × 𝐵)𝑎𝑎𝐵)
6158, 60syl 17 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎𝐵)
62 sonr 5054 . . . . . . . . . . . . . . . . 17 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵𝑎𝐵) → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
6362ex 450 . . . . . . . . . . . . . . . 16 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 → (𝑎𝐵 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
6431, 61, 63syl2im 40 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
6564pm2.01d 181 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
66 breq2 4655 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏))
67 df-br 4652 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
6866, 67syl6bb 276 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6968notbid 308 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7065, 69syl5ibcom 235 . . . . . . . . . . . . 13 (𝜑 → (𝑎 = 𝑏 → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7156, 70syl5bi 232 . . . . . . . . . . . 12 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ I → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7271con2d 129 . . . . . . . . . . 11 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
73 opex 4930 . . . . . . . . . . . 12 𝑎, 𝑏⟩ ∈ V
74 eldif 3582 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ (⟨𝑎, 𝑏⟩ ∈ V ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
7573, 74mpbiran 953 . . . . . . . . . . 11 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ I )
7672, 75syl6ibr 242 . . . . . . . . . 10 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ⟨𝑎, 𝑏⟩ ∈ (V ∖ I )))
7752, 76relssdv 5210 . . . . . . . . 9 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
78 disj2 4022 . . . . . . . . 9 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
7977, 78sylibr 224 . . . . . . . 8 (𝜑 → (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅)
80 disj3 4019 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
8179, 80sylib 208 . . . . . . 7 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
8245, 47, 813eqtr4a 2681 . . . . . 6 (𝜑 → ( ∖ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
8338, 82syl5eq 2667 . . . . 5 (𝜑 → (lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
84 soeq1 5052 . . . . 5 ((lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
8583, 84syl 17 . . . 4 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
8631, 85mpbird 247 . . 3 (𝜑 → (lt‘𝑂) Or 𝐵)
8724, 32, 8opsrbas 19473 . . . . 5 (𝜑 → (Base‘𝑆) = (Base‘𝑂))
8825, 87syl5eq 2667 . . . 4 (𝜑𝐵 = (Base‘𝑂))
89 soeq2 5053 . . . 4 (𝐵 = (Base‘𝑂) → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
9088, 89syl 17 . . 3 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
9186, 90mpbid 222 . 2 (𝜑 → (lt‘𝑂) Or (Base‘𝑂))
9288reseq2d 5394 . . . 4 (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘𝑂)))
93 ssun2 3775 . . . 4 ( I ↾ 𝐵) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
9492, 93syl6eqssr 3654 . . 3 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
9594, 46sseqtr4d 3640 . 2 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ )
96 eqid 2621 . . . 4 (Base‘𝑂) = (Base‘𝑂)
9796, 35, 36tosso 17030 . . 3 (𝑂 ∈ V → (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ )))
9834, 97ax-mp 5 . 2 (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ ))
9991, 95, 98sylanbrc 698 1 (𝜑𝑂 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  wrex 2912  {crab 2915  Vcvv 3198  cdif 3569  cun 3570  cin 3571  wss 3572  c0 3913  cop 4181   class class class wbr 4651  {copab 4710   I cid 5021   Or wor 5032   We wwe 5070   × cxp 5110  ccnv 5111  cres 5114  cima 5115  Rel wrel 5117  cfv 5886  (class class class)co 6647  𝑚 cmap 7854  Fincfn 7952  cn 11017  0cn0 11289  Basecbs 15851  lecple 15942  ltcplt 16935  Tosetctos 17027   mPwSer cmps 19345   <bag cltb 19348   ordPwSer copws 19349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-seqom 7540  df-1o 7557  df-2o 7558  df-oadd 7561  df-omul 7562  df-oexp 7563  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-oi 8412  df-cnf 8556  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-xnn0 11361  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-hash 13113  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-tset 15954  df-ple 15955  df-preset 16922  df-poset 16940  df-plt 16952  df-toset 17028  df-psr 19350  df-ltbag 19353  df-opsr 19354
This theorem is referenced by:  opsrtos  19480
  Copyright terms: Public domain W3C validator