MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Structured version   Visualization version   GIF version

Theorem opsrtoslem2 19249
Description: Lemma for opsrtos 19250. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem2 (𝜑𝑂 ∈ Toset)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.d . . . . . . . 8 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
2 ovex 6552 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
31, 2rabex2 4734 . . . . . . 7 𝐷 ∈ V
4 opsrtoslem.c . . . . . . . 8 𝐶 = (𝑇 <bag 𝐼)
5 opsrso.i . . . . . . . 8 (𝜑𝐼𝑉)
6 xpexg 6832 . . . . . . . . . 10 ((𝐼𝑉𝐼𝑉) → (𝐼 × 𝐼) ∈ V)
75, 5, 6syl2anc 690 . . . . . . . . 9 (𝜑 → (𝐼 × 𝐼) ∈ V)
8 opsrso.t . . . . . . . . 9 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
97, 8ssexd 4725 . . . . . . . 8 (𝜑𝑇 ∈ V)
10 opsrso.w . . . . . . . 8 (𝜑𝑇 We 𝐼)
114, 1, 5, 9, 10ltbwe 19236 . . . . . . 7 (𝜑𝐶 We 𝐷)
12 opsrso.r . . . . . . . . 9 (𝜑𝑅 ∈ Toset)
13 eqid 2606 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2606 . . . . . . . . . . 11 (le‘𝑅) = (le‘𝑅)
15 opsrtoslem.q . . . . . . . . . . 11 < = (lt‘𝑅)
1613, 14, 15tosso 16802 . . . . . . . . . 10 (𝑅 ∈ Toset → (𝑅 ∈ Toset ↔ ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅))))
1716ibi 254 . . . . . . . . 9 (𝑅 ∈ Toset → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1812, 17syl 17 . . . . . . . 8 (𝜑 → ( < Or (Base‘𝑅) ∧ ( I ↾ (Base‘𝑅)) ⊆ (le‘𝑅)))
1918simpld 473 . . . . . . 7 (𝜑< Or (Base‘𝑅))
20 opsrtoslem.ps . . . . . . . . 9 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
2120opabbii 4640 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2221wemapso 8313 . . . . . . 7 ((𝐷 ∈ V ∧ 𝐶 We 𝐷< Or (Base‘𝑅)) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))
233, 11, 19, 22mp3an2i 1420 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷))
24 opsrtoslem.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
25 opsrtoslem.b . . . . . . . 8 𝐵 = (Base‘𝑆)
2624, 13, 1, 25, 5psrbas 19142 . . . . . . 7 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
27 soeq2 4966 . . . . . . 7 (𝐵 = ((Base‘𝑅) ↑𝑚 𝐷) → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)))
2826, 27syl 17 . . . . . 6 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or ((Base‘𝑅) ↑𝑚 𝐷)))
2923, 28mpbird 245 . . . . 5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵)
30 soinxp 5093 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
3129, 30sylib 206 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵)
32 opsrso.o . . . . . . . 8 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
33 fvex 6095 . . . . . . . 8 ((𝐼 ordPwSer 𝑅)‘𝑇) ∈ V
3432, 33eqeltri 2680 . . . . . . 7 𝑂 ∈ V
35 opsrtoslem.l . . . . . . . 8 = (le‘𝑂)
36 eqid 2606 . . . . . . . 8 (lt‘𝑂) = (lt‘𝑂)
3735, 36pltfval 16725 . . . . . . 7 (𝑂 ∈ V → (lt‘𝑂) = ( ∖ I ))
3834, 37ax-mp 5 . . . . . 6 (lt‘𝑂) = ( ∖ I )
39 difundir 3835 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I ))
40 resss 5326 . . . . . . . . . 10 ( I ↾ 𝐵) ⊆ I
41 ssdif0 3892 . . . . . . . . . 10 (( I ↾ 𝐵) ⊆ I ↔ (( I ↾ 𝐵) ∖ I ) = ∅)
4240, 41mpbi 218 . . . . . . . . 9 (( I ↾ 𝐵) ∖ I ) = ∅
4342uneq2i 3722 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ (( I ↾ 𝐵) ∖ I )) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅)
44 un0 3915 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ) ∪ ∅) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4539, 43, 443eqtri 2632 . . . . . . 7 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I )
4632, 5, 12, 8, 10, 24, 25, 15, 4, 1, 20, 35opsrtoslem1 19248 . . . . . . . 8 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
4746difeq1d 3685 . . . . . . 7 (𝜑 → ( ∖ I ) = ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) ∖ I ))
48 inss2 3792 . . . . . . . . . . . 12 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵)
49 relxp 5136 . . . . . . . . . . . 12 Rel (𝐵 × 𝐵)
50 relss 5116 . . . . . . . . . . . 12 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
5148, 49, 50mp2 9 . . . . . . . . . . 11 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))
5251a1i 11 . . . . . . . . . 10 (𝜑 → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
53 df-br 4575 . . . . . . . . . . . . . 14 (𝑎 I 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ I )
54 vex 3172 . . . . . . . . . . . . . . 15 𝑏 ∈ V
5554ideq 5181 . . . . . . . . . . . . . 14 (𝑎 I 𝑏𝑎 = 𝑏)
5653, 55bitr3i 264 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ ∈ I ↔ 𝑎 = 𝑏)
57 brin 4625 . . . . . . . . . . . . . . . . . 18 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ (𝑎{⟨𝑥, 𝑦⟩ ∣ 𝜓}𝑎𝑎(𝐵 × 𝐵)𝑎))
5857simprbi 478 . . . . . . . . . . . . . . . . 17 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎(𝐵 × 𝐵)𝑎)
59 brxp 5058 . . . . . . . . . . . . . . . . . 18 (𝑎(𝐵 × 𝐵)𝑎 ↔ (𝑎𝐵𝑎𝐵))
6059simprbi 478 . . . . . . . . . . . . . . . . 17 (𝑎(𝐵 × 𝐵)𝑎𝑎𝐵)
6158, 60syl 17 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎𝐵)
62 sonr 4967 . . . . . . . . . . . . . . . . 17 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵𝑎𝐵) → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
6362ex 448 . . . . . . . . . . . . . . . 16 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵 → (𝑎𝐵 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
6431, 61, 63syl2im 39 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎))
6564pm2.01d 179 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎)
66 breq2 4578 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏))
67 df-br 4575 . . . . . . . . . . . . . . . 16 (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
6866, 67syl6bb 274 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
6968notbid 306 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (¬ 𝑎({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))𝑎 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7065, 69syl5ibcom 233 . . . . . . . . . . . . 13 (𝜑 → (𝑎 = 𝑏 → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7156, 70syl5bi 230 . . . . . . . . . . . 12 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ I → ¬ ⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵))))
7271con2d 127 . . . . . . . . . . 11 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
73 opex 4850 . . . . . . . . . . . 12 𝑎, 𝑏⟩ ∈ V
74 eldif 3546 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ (⟨𝑎, 𝑏⟩ ∈ V ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ I ))
7573, 74mpbiran 954 . . . . . . . . . . 11 (⟨𝑎, 𝑏⟩ ∈ (V ∖ I ) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ I )
7672, 75syl6ibr 240 . . . . . . . . . 10 (𝜑 → (⟨𝑎, 𝑏⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ⟨𝑎, 𝑏⟩ ∈ (V ∖ I )))
7752, 76relssdv 5121 . . . . . . . . 9 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
78 disj2 3972 . . . . . . . . 9 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ⊆ (V ∖ I ))
7977, 78sylibr 222 . . . . . . . 8 (𝜑 → (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅)
80 disj3 3969 . . . . . . . 8 ((({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∩ I ) = ∅ ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
8179, 80sylib 206 . . . . . . 7 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∖ I ))
8245, 47, 813eqtr4a 2666 . . . . . 6 (𝜑 → ( ∖ I ) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
8338, 82syl5eq 2652 . . . . 5 (𝜑 → (lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)))
84 soeq1 4965 . . . . 5 ((lt‘𝑂) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
8583, 84syl 17 . . . 4 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) Or 𝐵))
8631, 85mpbird 245 . . 3 (𝜑 → (lt‘𝑂) Or 𝐵)
8724, 32, 8opsrbas 19243 . . . . 5 (𝜑 → (Base‘𝑆) = (Base‘𝑂))
8825, 87syl5eq 2652 . . . 4 (𝜑𝐵 = (Base‘𝑂))
89 soeq2 4966 . . . 4 (𝐵 = (Base‘𝑂) → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
9088, 89syl 17 . . 3 (𝜑 → ((lt‘𝑂) Or 𝐵 ↔ (lt‘𝑂) Or (Base‘𝑂)))
9186, 90mpbid 220 . 2 (𝜑 → (lt‘𝑂) Or (Base‘𝑂))
9288reseq2d 5301 . . . 4 (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘𝑂)))
93 ssun2 3735 . . . 4 ( I ↾ 𝐵) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
9492, 93syl6eqssr 3615 . . 3 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
9594, 46sseqtr4d 3601 . 2 (𝜑 → ( I ↾ (Base‘𝑂)) ⊆ )
96 eqid 2606 . . . 4 (Base‘𝑂) = (Base‘𝑂)
9796, 35, 36tosso 16802 . . 3 (𝑂 ∈ V → (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ )))
9834, 97ax-mp 5 . 2 (𝑂 ∈ Toset ↔ ((lt‘𝑂) Or (Base‘𝑂) ∧ ( I ↾ (Base‘𝑂)) ⊆ ))
9991, 95, 98sylanbrc 694 1 (𝜑𝑂 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2892  wrex 2893  {crab 2896  Vcvv 3169  cdif 3533  cun 3534  cin 3535  wss 3536  c0 3870  cop 4127   class class class wbr 4574  {copab 4633   I cid 4935   Or wor 4945   We wwe 4983   × cxp 5023  ccnv 5024  cres 5027  cima 5028  Rel wrel 5030  cfv 5787  (class class class)co 6524  𝑚 cmap 7718  Fincfn 7815  cn 10864  0cn0 11136  Basecbs 15638  lecple 15718  ltcplt 16707  Tosetctos 16799   mPwSer cmps 19115   <bag cltb 19118   ordPwSer copws 19119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-seqom 7404  df-1o 7421  df-2o 7422  df-oadd 7425  df-omul 7426  df-oexp 7427  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-oi 8272  df-cnf 8416  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-fz 12150  df-hash 12932  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-plusg 15724  df-mulr 15725  df-sca 15727  df-vsca 15728  df-tset 15730  df-ple 15731  df-preset 16694  df-poset 16712  df-plt 16724  df-toset 16800  df-psr 19120  df-ltbag 19123  df-opsr 19124
This theorem is referenced by:  opsrtos  19250
  Copyright terms: Public domain W3C validator