Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrreccl Structured version   Visualization version   GIF version

Theorem pell1234qrreccl 36884
Description: General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrreccl ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷))

Proof of Theorem pell1234qrreccl
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell1234qr 36881 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1))))
21biimpa 501 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)))
3 pell1234qrre 36882 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ)
4 pell1234qrne0 36883 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0)
53, 4rereccld 10797 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ ℝ)
65ad2antrr 761 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) ∈ ℝ)
7 simplrl 799 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℤ)
8 simplrr 800 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℤ)
98znegcld 11428 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℤ)
105recnd 10013 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ ℂ)
1110ad2antrr 761 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) ∈ ℂ)
12 zcn 11327 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1312adantr 481 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
1413ad2antlr 762 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑎 ∈ ℂ)
15 eldifi 3715 . . . . . . . . . . . . . 14 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
1615nncnd 10981 . . . . . . . . . . . . 13 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℂ)
1716ad3antrrr 765 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐷 ∈ ℂ)
1817sqrtcld 14105 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
198zcnd 11427 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝑏 ∈ ℂ)
2019negcld 10324 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → -𝑏 ∈ ℂ)
2118, 20mulcld 10005 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · -𝑏) ∈ ℂ)
2214, 21addcld 10004 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) ∈ ℂ)
233recnd 10013 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℂ)
2423ad2antrr 761 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ∈ ℂ)
254ad2antrr 761 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 ≠ 0)
2618, 19sqmuld 12957 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (((√‘𝐷) · 𝑏)↑2) = (((√‘𝐷)↑2) · (𝑏↑2)))
2717sqsqrtd 14107 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷)↑2) = 𝐷)
2827oveq1d 6620 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (((√‘𝐷)↑2) · (𝑏↑2)) = (𝐷 · (𝑏↑2)))
2926, 28eqtr2d 2661 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (𝑏↑2)) = (((√‘𝐷) · 𝑏)↑2))
3029oveq2d 6621 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)))
31 simprr 795 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
3218, 19mulcld 10005 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · 𝑏) ∈ ℂ)
33 subsq 12909 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ ((√‘𝐷) · 𝑏) ∈ ℂ) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
3414, 32, 33syl2anc 692 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (((√‘𝐷) · 𝑏)↑2)) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
3530, 31, 343eqtr3d 2668 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 1 = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
3624, 25recidd 10741 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = 1)
37 simprl 793 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → 𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)))
3818, 19mulneg2d 10429 . . . . . . . . . . . . 13 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((√‘𝐷) · -𝑏) = -((√‘𝐷) · 𝑏))
3938oveq2d 6621 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 + -((√‘𝐷) · 𝑏)))
4014, 32negsubd 10343 . . . . . . . . . . . 12 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + -((√‘𝐷) · 𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏)))
4139, 40eqtrd 2660 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝑎 + ((√‘𝐷) · -𝑏)) = (𝑎 − ((√‘𝐷) · 𝑏)))
4237, 41oveq12d 6623 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))) = ((𝑎 + ((√‘𝐷) · 𝑏)) · (𝑎 − ((√‘𝐷) · 𝑏))))
4335, 36, 423eqtr4d 2670 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐴 · (1 / 𝐴)) = (𝐴 · (𝑎 + ((√‘𝐷) · -𝑏))))
4411, 22, 24, 25, 43mulcanad 10607 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)))
45 sqneg 12860 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (-𝑏↑2) = (𝑏↑2))
4619, 45syl 17 . . . . . . . . . . 11 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (-𝑏↑2) = (𝑏↑2))
4746oveq2d 6621 . . . . . . . . . 10 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → (𝐷 · (-𝑏↑2)) = (𝐷 · (𝑏↑2)))
4847oveq2d 6621 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = ((𝑎↑2) − (𝐷 · (𝑏↑2))))
4948, 31eqtrd 2660 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)
50 oveq1 6612 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝑐 + ((√‘𝐷) · 𝑑)) = (𝑎 + ((√‘𝐷) · 𝑑)))
5150eqeq2d 2636 . . . . . . . . . 10 (𝑐 = 𝑎 → ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ↔ (1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑))))
52 oveq1 6612 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐↑2) = (𝑎↑2))
5352oveq1d 6620 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = ((𝑎↑2) − (𝐷 · (𝑑↑2))))
5453eqeq1d 2628 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1))
5551, 54anbi12d 746 . . . . . . . . 9 (𝑐 = 𝑎 → (((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1)))
56 oveq2 6613 . . . . . . . . . . . 12 (𝑑 = -𝑏 → ((√‘𝐷) · 𝑑) = ((√‘𝐷) · -𝑏))
5756oveq2d 6621 . . . . . . . . . . 11 (𝑑 = -𝑏 → (𝑎 + ((√‘𝐷) · 𝑑)) = (𝑎 + ((√‘𝐷) · -𝑏)))
5857eqeq2d 2636 . . . . . . . . . 10 (𝑑 = -𝑏 → ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ↔ (1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏))))
59 oveq1 6612 . . . . . . . . . . . . 13 (𝑑 = -𝑏 → (𝑑↑2) = (-𝑏↑2))
6059oveq2d 6621 . . . . . . . . . . . 12 (𝑑 = -𝑏 → (𝐷 · (𝑑↑2)) = (𝐷 · (-𝑏↑2)))
6160oveq2d 6621 . . . . . . . . . . 11 (𝑑 = -𝑏 → ((𝑎↑2) − (𝐷 · (𝑑↑2))) = ((𝑎↑2) − (𝐷 · (-𝑏↑2))))
6261eqeq1d 2628 . . . . . . . . . 10 (𝑑 = -𝑏 → (((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1 ↔ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1))
6358, 62anbi12d 746 . . . . . . . . 9 (𝑑 = -𝑏 → (((1 / 𝐴) = (𝑎 + ((√‘𝐷) · 𝑑)) ∧ ((𝑎↑2) − (𝐷 · (𝑑↑2))) = 1) ↔ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)))
6455, 63rspc2ev 3313 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ -𝑏 ∈ ℤ ∧ ((1 / 𝐴) = (𝑎 + ((√‘𝐷) · -𝑏)) ∧ ((𝑎↑2) − (𝐷 · (-𝑏↑2))) = 1)) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
657, 9, 44, 49, 64syl112anc 1327 . . . . . . 7 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))
666, 65jca 554 . . . . . 6 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))
6766ex 450 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6867rexlimdvva 3036 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
6968adantld 483 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((𝐴 ∈ ℝ ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 + ((√‘𝐷) · 𝑏)) ∧ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
702, 69mpd 15 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)))
71 elpell1234qr 36881 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
7271adantr 481 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → ((1 / 𝐴) ∈ (Pell1234QR‘𝐷) ↔ ((1 / 𝐴) ∈ ℝ ∧ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ ((1 / 𝐴) = (𝑐 + ((√‘𝐷) · 𝑑)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1))))
7370, 72mpbird 247 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wrex 2913  cdif 3557  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cmin 10211  -cneg 10212   / cdiv 10629  cn 10965  2c2 11015  cz 11322  cexp 12797  csqrt 13902  NNcsquarenn 36866  Pell1234QRcpell1234qr 36868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-pell1234qr 36874
This theorem is referenced by:  pell14qrreccl  36894
  Copyright terms: Public domain W3C validator