MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpcom Structured version   Visualization version   GIF version

Theorem perpcom 25542
Description: The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpcom (𝜑𝐵(⟂G‘𝐺)𝐴)

Proof of Theorem perpcom
Dummy variables 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perpcom.1 . 2 (𝜑𝐴(⟂G‘𝐺)𝐵)
2 incom 3789 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
32a1i 11 . . . 4 (𝜑 → (𝐴𝐵) = (𝐵𝐴))
4 ralcom 3092 . . . . 5 (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
5 isperp.p . . . . . . . 8 𝑃 = (Base‘𝐺)
6 isperp.d . . . . . . . 8 = (dist‘𝐺)
7 isperp.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
8 isperp.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
9 eqid 2621 . . . . . . . 8 (pInvG‘𝐺) = (pInvG‘𝐺)
10 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
1110ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
12 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
1312ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
14 simplrr 800 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
155, 8, 7, 11, 13, 14tglnpt 25378 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
16 inss1 3817 . . . . . . . . . 10 (𝐴𝐵) ⊆ 𝐴
17 simpllr 798 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
1816, 17sseldi 3586 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
195, 8, 7, 11, 13, 18tglnpt 25378 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
20 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
2120ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
22 simplrl 799 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
235, 8, 7, 11, 21, 22tglnpt 25378 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
24 simpr 477 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
255, 6, 7, 8, 9, 11, 15, 19, 23, 24ragcom 25527 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
2610ad3antrrr 765 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐺 ∈ TarskiG)
2720ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐵 ∈ ran 𝐿)
28 simplrl 799 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝐵)
295, 8, 7, 26, 27, 28tglnpt 25378 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑣𝑃)
3012ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝐴 ∈ ran 𝐿)
31 simpllr 798 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥 ∈ (𝐴𝐵))
3216, 31sseldi 3586 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝐴)
335, 8, 7, 26, 30, 32tglnpt 25378 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑥𝑃)
34 simplrr 800 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝐴)
355, 8, 7, 26, 30, 34tglnpt 25378 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → 𝑢𝑃)
36 simpr 477 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺))
375, 6, 7, 8, 9, 26, 29, 33, 35, 36ragcom 25527 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) ∧ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3825, 37impbida 876 . . . . . 6 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ (𝑣𝐵𝑢𝐴)) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
39382ralbidva 2984 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑣𝐵𝑢𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
404, 39syl5bb 272 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
413, 40rexeqbidva 3148 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
425, 6, 7, 8, 10, 12, 20isperp 25541 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
435, 6, 7, 8, 10, 20, 12isperp 25541 . . 3 (𝜑 → (𝐵(⟂G‘𝐺)𝐴 ↔ ∃𝑥 ∈ (𝐵𝐴)∀𝑣𝐵𝑢𝐴 ⟨“𝑣𝑥𝑢”⟩ ∈ (∟G‘𝐺)))
4441, 42, 433bitr4d 300 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵𝐵(⟂G‘𝐺)𝐴))
451, 44mpbid 222 1 (𝜑𝐵(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909  cin 3559   class class class wbr 4623  ran crn 5085  cfv 5857  ⟨“cs3 13540  Basecbs 15800  distcds 15890  TarskiGcstrkg 25263  Itvcitv 25269  LineGclng 25270  pInvGcmir 25481  ∟Gcrag 25522  ⟂Gcperpg 25524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-xnn0 11324  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-concat 13256  df-s1 13257  df-s2 13546  df-s3 13547  df-trkgc 25281  df-trkgb 25282  df-trkgcb 25283  df-trkg 25286  df-mir 25482  df-rag 25523  df-perpg 25525
This theorem is referenced by:  hlperpnel  25551  colperpexlem3  25558  mideulem2  25560  midex  25563  opphllem5  25577  opphllem6  25578  opphl  25580  lmieu  25610  lnperpex  25629  trgcopy  25630
  Copyright terms: Public domain W3C validator