MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyid Structured version   Visualization version   GIF version

Theorem phtpyid 23595
Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
phtpyid.1 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
phtpyid.3 (𝜑𝐹 ∈ (II Cn 𝐽))
Assertion
Ref Expression
phtpyid (𝜑𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem phtpyid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyid.3 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpyid.1 . . 3 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
3 iitopon 23489 . . . 4 II ∈ (TopOn‘(0[,]1))
43a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
52, 4, 1htpyid 23583 . 2 (𝜑𝐺 ∈ (𝐹(II Htpy 𝐽)𝐹))
6 0elunit 12858 . . . 4 0 ∈ (0[,]1)
7 fveq2 6672 . . . . 5 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
8 eqidd 2824 . . . . 5 (𝑦 = 𝑠 → (𝐹‘0) = (𝐹‘0))
9 fvex 6685 . . . . 5 (𝐹‘0) ∈ V
107, 8, 2, 9ovmpo 7312 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0))
116, 10mpan 688 . . 3 (𝑠 ∈ (0[,]1) → (0𝐺𝑠) = (𝐹‘0))
1211adantl 484 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0))
13 1elunit 12859 . . . 4 1 ∈ (0[,]1)
14 fveq2 6672 . . . . 5 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
15 eqidd 2824 . . . . 5 (𝑦 = 𝑠 → (𝐹‘1) = (𝐹‘1))
16 fvex 6685 . . . . 5 (𝐹‘1) ∈ V
1714, 15, 2, 16ovmpo 7312 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1))
1813, 17mpan 688 . . 3 (𝑠 ∈ (0[,]1) → (1𝐺𝑠) = (𝐹‘1))
1918adantl 484 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1))
201, 1, 5, 12, 19isphtpyd 23592 1 (𝜑𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540  [,]cicc 12744  TopOnctopon 21520   Cn ccn 21834  IIcii 23485  PHtpycphtpy 23574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-tx 22172  df-ii 23487  df-htpy 23576  df-phtpy 23577
This theorem is referenced by:  phtpcer  23601
  Copyright terms: Public domain W3C validator