MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppieq0 Structured version   Visualization version   GIF version

Theorem ppieq0 25753
Description: The prime-counting function π is zero iff its argument is less than 2. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppieq0 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))

Proof of Theorem ppieq0
StepHypRef Expression
1 2re 11712 . . . . 5 2 ∈ ℝ
2 lenlt 10719 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
31, 2mpan 688 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ¬ 𝐴 < 2))
4 ppinncl 25751 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ∈ ℕ)
54nnne0d 11688 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (π𝐴) ≠ 0)
65ex 415 . . . 4 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → (π𝐴) ≠ 0))
73, 6sylbird 262 . . 3 (𝐴 ∈ ℝ → (¬ 𝐴 < 2 → (π𝐴) ≠ 0))
87necon4bd 3036 . 2 (𝐴 ∈ ℝ → ((π𝐴) = 0 → 𝐴 < 2))
9 reflcl 13167 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
109adantr 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℝ)
11 1red 10642 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → 1 ∈ ℝ)
12 2z 12015 . . . . . . . . . 10 2 ∈ ℤ
13 fllt 13177 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1412, 13mpan2 689 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < 2 ↔ (⌊‘𝐴) < 2))
1514biimpa 479 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < 2)
16 df-2 11701 . . . . . . . 8 2 = (1 + 1)
1715, 16breqtrdi 5107 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) < (1 + 1))
18 flcl 13166 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
1918adantr 483 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ∈ ℤ)
20 1z 12013 . . . . . . . 8 1 ∈ ℤ
21 zleltp1 12034 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2219, 20, 21sylancl 588 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((⌊‘𝐴) ≤ 1 ↔ (⌊‘𝐴) < (1 + 1)))
2317, 22mpbird 259 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (⌊‘𝐴) ≤ 1)
24 ppiwordi 25739 . . . . . 6 (((⌊‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (⌊‘𝐴) ≤ 1) → (π‘(⌊‘𝐴)) ≤ (π‘1))
2510, 11, 23, 24syl3anc 1367 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) ≤ (π‘1))
26 ppifl 25737 . . . . . 6 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
2726adantr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘(⌊‘𝐴)) = (π𝐴))
28 ppi1 25741 . . . . . 6 (π‘1) = 0
2928a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π‘1) = 0)
3025, 27, 293brtr3d 5097 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ≤ 0)
31 ppicl 25708 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
3231adantr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) ∈ ℕ0)
33 nn0le0eq0 11926 . . . . 5 ((π𝐴) ∈ ℕ0 → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3432, 33syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → ((π𝐴) ≤ 0 ↔ (π𝐴) = 0))
3530, 34mpbid 234 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 2) → (π𝐴) = 0)
3635ex 415 . 2 (𝐴 ∈ ℝ → (𝐴 < 2 → (π𝐴) = 0))
378, 36impbid 214 1 (𝐴 ∈ ℝ → ((π𝐴) = 0 ↔ 𝐴 < 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  2c2 11693  0cn0 11898  cz 11982  cfl 13161  πcppi 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-icc 12746  df-fz 12894  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-prm 16016  df-ppi 25677
This theorem is referenced by:  ppiltx  25754
  Copyright terms: Public domain W3C validator