Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quad1 Structured version   Visualization version   GIF version

Theorem quad1 43834
Description: A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
quad1.a (𝜑𝐴 ∈ ℂ)
quad1.z (𝜑𝐴 ≠ 0)
quad1.b (𝜑𝐵 ∈ ℂ)
quad1.c (𝜑𝐶 ∈ ℂ)
quad1.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem quad1
StepHypRef Expression
1 quad1.a . . . . 5 (𝜑𝐴 ∈ ℂ)
21adantr 483 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
3 quad1.z . . . . 5 (𝜑𝐴 ≠ 0)
43adantr 483 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐴 ≠ 0)
5 quad1.b . . . . 5 (𝜑𝐵 ∈ ℂ)
65adantr 483 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
7 quad1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
87adantr 483 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
9 simpr 487 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
10 quad1.d . . . . 5 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1110adantr 483 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
122, 4, 6, 8, 9, 11quad 25418 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
1312reubidva 3388 . 2 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
145negcld 10984 . . . . 5 (𝜑 → -𝐵 ∈ ℂ)
155sqcld 13509 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
16 4cn 11723 . . . . . . . . . 10 4 ∈ ℂ
1716a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℂ)
181, 7mulcld 10661 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
1917, 18mulcld 10661 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
2015, 19subcld 10997 . . . . . . 7 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℂ)
2110, 20eqeltrd 2913 . . . . . 6 (𝜑𝐷 ∈ ℂ)
2221sqrtcld 14797 . . . . 5 (𝜑 → (√‘𝐷) ∈ ℂ)
2314, 22addcld 10660 . . . 4 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
24 2cnd 11716 . . . . 5 (𝜑 → 2 ∈ ℂ)
2524, 1mulcld 10661 . . . 4 (𝜑 → (2 · 𝐴) ∈ ℂ)
26 2ne0 11742 . . . . . 6 2 ≠ 0
2726a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
2824, 1, 27, 3mulne0d 11292 . . . 4 (𝜑 → (2 · 𝐴) ≠ 0)
2923, 25, 28divcld 11416 . . 3 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
3014, 22subcld 10997 . . . 4 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
3130, 25, 28divcld 11416 . . 3 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
32 euoreqb 43357 . . 3 ((((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ ∧ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ) → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3329, 31, 32syl2anc 586 . 2 (𝜑 → (∃!𝑥 ∈ ℂ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
3414, 22, 25, 28divdird 11454 . . . 4 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))))
3514, 22, 25, 28divsubdird 11455 . . . . 5 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3614, 25, 28divcld 11416 . . . . . 6 (𝜑 → (-𝐵 / (2 · 𝐴)) ∈ ℂ)
3722, 25, 28divcld 11416 . . . . . 6 (𝜑 → ((√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
3836, 37negsubd 11003 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) − ((√‘𝐷) / (2 · 𝐴))))
3922, 25, 28divnegd 11429 . . . . . 6 (𝜑 → -((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)))
4039oveq2d 7172 . . . . 5 (𝜑 → ((-𝐵 / (2 · 𝐴)) + -((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4135, 38, 403eqtr2d 2862 . . . 4 (𝜑 → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))))
4234, 41eqeq12d 2837 . . 3 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ ((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴)))))
4322negcld 10984 . . . . . 6 (𝜑 → -(√‘𝐷) ∈ ℂ)
4443, 25, 28divcld 11416 . . . . 5 (𝜑 → (-(√‘𝐷) / (2 · 𝐴)) ∈ ℂ)
4536, 37, 44addcand 10843 . . . 4 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ ((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴))))
46 div11 11326 . . . . 5 (((√‘𝐷) ∈ ℂ ∧ -(√‘𝐷) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4722, 43, 25, 28, 46syl112anc 1370 . . . 4 (𝜑 → (((√‘𝐷) / (2 · 𝐴)) = (-(√‘𝐷) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
4822eqnegd 11361 . . . . 5 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
49 cnsqrt00 14752 . . . . . 6 (𝐷 ∈ ℂ → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5021, 49syl 17 . . . . 5 (𝜑 → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
5148, 50bitrd 281 . . . 4 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ 𝐷 = 0))
5245, 47, 513bitrd 307 . . 3 (𝜑 → (((-𝐵 / (2 · 𝐴)) + ((√‘𝐷) / (2 · 𝐴))) = ((-𝐵 / (2 · 𝐴)) + (-(√‘𝐷) / (2 · 𝐴))) ↔ 𝐷 = 0))
5342, 52bitrd 281 . 2 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 𝐷 = 0))
5413, 33, 533bitrd 307 1 (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  ∃!wreu 3140  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  4c4 11695  cexp 13430  csqrt 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator