Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrntotbnd Structured version   Visualization version   GIF version

Theorem rrntotbnd 35129
Description: A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
rrntotbnd.1 𝑋 = (ℝ ↑m 𝐼)
rrntotbnd.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
rrntotbnd (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))

Proof of Theorem rrntotbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 ((ℂflds ℝ) ↑s 𝐼) = ((ℂflds ℝ) ↑s 𝐼)
2 eqid 2821 . . 3 (dist‘((ℂflds ℝ) ↑s 𝐼)) = (dist‘((ℂflds ℝ) ↑s 𝐼))
3 rrntotbnd.1 . . 3 𝑋 = (ℝ ↑m 𝐼)
41, 2, 3repwsmet 35127 . 2 (𝐼 ∈ Fin → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
53rrnmet 35122 . 2 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
6 hashcl 13718 . . . 4 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
7 nn0re 11907 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → (♯‘𝐼) ∈ ℝ)
8 nn0ge0 11923 . . . . 5 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (♯‘𝐼))
97, 8resqrtcld 14777 . . . 4 ((♯‘𝐼) ∈ ℕ0 → (√‘(♯‘𝐼)) ∈ ℝ)
106, 9syl 17 . . 3 (𝐼 ∈ Fin → (√‘(♯‘𝐼)) ∈ ℝ)
117, 8sqrtge0d 14780 . . . 4 ((♯‘𝐼) ∈ ℕ0 → 0 ≤ (√‘(♯‘𝐼)))
126, 11syl 17 . . 3 (𝐼 ∈ Fin → 0 ≤ (√‘(♯‘𝐼)))
1310, 12ge0p1rpd 12462 . 2 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ+)
14 1rp 12394 . . 3 1 ∈ ℝ+
1514a1i 11 . 2 (𝐼 ∈ Fin → 1 ∈ ℝ+)
16 metcl 22942 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
17163expb 1116 . . . 4 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
185, 17sylan 582 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℝ)
1910adantr 483 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ∈ ℝ)
204adantr 483 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋))
21 simprl 769 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
22 simprr 771 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
23 metcl 22942 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
24 metge0 22955 . . . . . . 7 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))
2523, 24jca 514 . . . . . 6 (((dist‘((ℂflds ℝ) ↑s 𝐼)) ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2620, 21, 22, 25syl3anc 1367 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
2726simpld 497 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ)
2819, 27remulcld 10671 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
29 peano2re 10813 . . . . . 6 ((√‘(♯‘𝐼)) ∈ ℝ → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3010, 29syl 17 . . . . 5 (𝐼 ∈ Fin → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3130adantr 483 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) + 1) ∈ ℝ)
3231, 27remulcld 10671 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ∈ ℝ)
33 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
341, 2, 3, 33rrnequiv 35128 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦) ∧ (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))))
3534simprd 498 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3619lep1d 11571 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1))
37 lemul1a 11494 . . . 4 ((((√‘(♯‘𝐼)) ∈ ℝ ∧ ((√‘(♯‘𝐼)) + 1) ∈ ℝ ∧ ((𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ∈ ℝ ∧ 0 ≤ (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦))) ∧ (√‘(♯‘𝐼)) ≤ ((√‘(♯‘𝐼)) + 1)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3819, 31, 26, 36, 37syl31anc 1369 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘(♯‘𝐼)) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
3918, 28, 32, 35, 38letrd 10797 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ≤ (((√‘(♯‘𝐼)) + 1) · (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦)))
4034simpld 497 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (𝑥(ℝn𝐼)𝑦))
4118recnd 10669 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) ∈ ℂ)
4241mulid2d 10659 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (1 · (𝑥(ℝn𝐼)𝑦)) = (𝑥(ℝn𝐼)𝑦))
4340, 42breqtrrd 5094 . 2 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(dist‘((ℂflds ℝ) ↑s 𝐼))𝑦) ≤ (1 · (𝑥(ℝn𝐼)𝑦)))
44 eqid 2821 . 2 ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) = ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌))
45 rrntotbnd.2 . 2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
46 ax-resscn 10594 . . 3 ℝ ⊆ ℂ
471, 44cnpwstotbnd 35090 . . 3 ((ℝ ⊆ ℂ ∧ 𝐼 ∈ Fin) → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
4846, 47mpan 688 . 2 (𝐼 ∈ Fin → (((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (TotBnd‘𝑌) ↔ ((dist‘((ℂflds ℝ) ↑s 𝐼)) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌)))
494, 5, 13, 15, 39, 43, 44, 45, 48equivbnd2 35085 1 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066   × cxp 5553  cres 5557  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cle 10676  0cn0 11898  +crp 12390  chash 13691  csqrt 14592  s cress 16484  distcds 16574  s cpws 16720  Metcmet 20531  fldccnfld 20545  TotBndctotbnd 35059  Bndcbnd 35060  ncrrn 35118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-gz 16266  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-topgen 16717  df-prds 16721  df-pws 16723  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-totbnd 35061  df-bnd 35072  df-rrn 35119
This theorem is referenced by:  rrnheibor  35130
  Copyright terms: Public domain W3C validator