MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmet Structured version   Visualization version   GIF version

Theorem prdsmet 22980
Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsmet.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsmet.b 𝐵 = (Base‘𝑌)
prdsmet.v 𝑉 = (Base‘𝑅)
prdsmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsmet.d 𝐷 = (dist‘𝑌)
prdsmet.s (𝜑𝑆𝑊)
prdsmet.i (𝜑𝐼 ∈ Fin)
prdsmet.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsmet.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
Assertion
Ref Expression
prdsmet (𝜑𝐷 ∈ (Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsmet
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmet.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsmet.b . . 3 𝐵 = (Base‘𝑌)
3 prdsmet.v . . 3 𝑉 = (Base‘𝑅)
4 prdsmet.e . . 3 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
5 prdsmet.d . . 3 𝐷 = (dist‘𝑌)
6 prdsmet.s . . 3 (𝜑𝑆𝑊)
7 prdsmet.i . . 3 (𝜑𝐼 ∈ Fin)
8 prdsmet.r . . 3 ((𝜑𝑥𝐼) → 𝑅𝑍)
9 prdsmet.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
10 metxmet 22944 . . . 4 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
119, 10syl 17 . . 3 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsxmet 22979 . 2 (𝜑𝐷 ∈ (∞Met‘𝐵))
131, 2, 3, 4, 5, 6, 7, 8, 11prdsdsf 22977 . . . 4 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
1413ffnd 6515 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
156adantr 483 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
167adantr 483 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
178ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
1817adantr 483 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑍)
19 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
20 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
211, 2, 15, 16, 18, 19, 20, 3, 4, 5prdsdsval3 16758 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
221, 2, 15, 16, 18, 3, 19prdsbascl 16756 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
231, 2, 15, 16, 18, 3, 20prdsbascl 16756 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
24 r19.26 3170 . . . . . . . . . . 11 (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) ↔ (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉))
25 metcl 22942 . . . . . . . . . . . . . . 15 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
26253expib 1118 . . . . . . . . . . . . . 14 (𝐸 ∈ (Met‘𝑉) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
279, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2827ralimdva 3177 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2928adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3024, 29syl5bir 245 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3122, 23, 30mp2and 697 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
32 eqid 2821 . . . . . . . . . 10 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
3332fmpt 6874 . . . . . . . . 9 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ↔ (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3431, 33sylib 220 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3534frnd 6521 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
36 0red 10644 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
3736snssd 4742 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
3835, 37unssd 4162 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
39 xrltso 12535 . . . . . . . 8 < Or ℝ*
4039a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → < Or ℝ*)
41 mptfi 8823 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
42 rnfi 8807 . . . . . . . . 9 ((𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
4316, 41, 423syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
44 snfi 8594 . . . . . . . 8 {0} ∈ Fin
45 unfi 8785 . . . . . . . 8 ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
4643, 44, 45sylancl 588 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
47 ssun2 4149 . . . . . . . . 9 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
48 c0ex 10635 . . . . . . . . . 10 0 ∈ V
4948snss 4718 . . . . . . . . 9 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5047, 49mpbir 233 . . . . . . . 8 0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
51 ne0i 4300 . . . . . . . 8 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
5250, 51mp1i 13 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
53 ressxr 10685 . . . . . . . 8 ℝ ⊆ ℝ*
5438, 53sstrdi 3979 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
55 fisupcl 8933 . . . . . . 7 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5640, 46, 52, 54, 55syl13anc 1368 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5738, 56sseldd 3968 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ ℝ)
5821, 57eqeltrd 2913 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ ℝ)
5958ralrimivva 3191 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ)
60 ffnov 7278 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ))
6114, 59, 60sylanbrc 585 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ismet2 22943 . 2 (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ))
6312, 61, 62sylanbrc 585 1 (𝜑𝐷 ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  cun 3934  wss 3936  c0 4291  {csn 4567  cmpt 5146   Or wor 5473   × cxp 5553  ran crn 5556  cres 5557   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  supcsup 8904  cr 10536  0cc0 10537  +∞cpnf 10672  *cxr 10674   < clt 10675  [,]cicc 12742  Basecbs 16483  distcds 16574  Xscprds 16719  ∞Metcxmet 20530  Metcmet 20531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-prds 16721  df-xmet 20538  df-met 20539
This theorem is referenced by:  xpsmet  22992  prdsmslem1  23137  prdsbnd  35086  prdstotbnd  35087  prdsbnd2  35088  repwsmet  35127
  Copyright terms: Public domain W3C validator