![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem2 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 14999. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem2 | ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10077 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
2 | 3nn 11224 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
3 | nndivre 11094 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 708 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
5 | nnnn0 11337 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
6 | reexpcl 12917 | . . . . . 6 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑛 ∈ ℕ0) → ((1 / 3)↑𝑛) ∈ ℝ) | |
7 | 4, 5, 6 | sylancr 696 | . . . . 5 ⊢ (𝑛 ∈ ℕ → ((1 / 3)↑𝑛) ∈ ℝ) |
8 | 0re 10078 | . . . . 5 ⊢ 0 ∈ ℝ | |
9 | ifcl 4163 | . . . . 5 ⊢ ((((1 / 3)↑𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) | |
10 | 7, 8, 9 | sylancl 695 | . . . 4 ⊢ (𝑛 ∈ ℕ → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
11 | 10 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0) ∈ ℝ) |
12 | eqid 2651 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) | |
13 | 11, 12 | fmptd 6425 | . 2 ⊢ (𝐴 ⊆ ℕ → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)):ℕ⟶ℝ) |
14 | nnex 11064 | . . . . 5 ⊢ ℕ ∈ V | |
15 | 14 | elpw2 4858 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ ↔ 𝐴 ⊆ ℕ) |
16 | eleq2 2719 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ 𝑥 ↔ 𝑛 ∈ 𝐴)) | |
17 | 16 | ifbid 4141 | . . . . . 6 ⊢ (𝑥 = 𝐴 → if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0) = if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) |
18 | 17 | mpteq2dv 4778 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
19 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
20 | 14 | mptex 6527 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)) ∈ V |
21 | 18, 19, 20 | fvmpt 6321 | . . . 4 ⊢ (𝐴 ∈ 𝒫 ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
22 | 15, 21 | sylbir 225 | . . 3 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0))) |
23 | 22 | feq1d 6068 | . 2 ⊢ (𝐴 ⊆ ℕ → ((𝐹‘𝐴):ℕ⟶ℝ ↔ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐴, ((1 / 3)↑𝑛), 0)):ℕ⟶ℝ)) |
24 | 13, 23 | mpbird 247 | 1 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ifcif 4119 𝒫 cpw 4191 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 0cc0 9974 1c1 9975 / cdiv 10722 ℕcn 11058 3c3 11109 ℕ0cn0 11330 ↑cexp 12900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-seq 12842 df-exp 12901 |
This theorem is referenced by: rpnnen2lem5 14991 rpnnen2lem6 14992 rpnnen2lem7 14993 rpnnen2lem8 14994 rpnnen2lem9 14995 rpnnen2lem10 14996 rpnnen2lem12 14998 |
Copyright terms: Public domain | W3C validator |