Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0p1 Structured version   Visualization version   GIF version

Theorem sge0p1 40394
Description: The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0p1.1 (𝜑𝑁 ∈ (ℤ𝑀))
sge0p1.2 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
sge0p1.3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
Assertion
Ref Expression
sge0p1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sge0p1
StepHypRef Expression
1 sge0p1.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 fzsuc 12373 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
31, 2syl 17 . . . 4 (𝜑 → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
43mpteq1d 4729 . . 3 (𝜑 → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴) = (𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴))
54fveq2d 6182 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)))
6 nfv 1841 . . 3 𝑘𝜑
7 ovex 6663 . . . 4 (𝑀...𝑁) ∈ V
87a1i 11 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
9 snex 4899 . . . 4 {(𝑁 + 1)} ∈ V
109a1i 11 . . 3 (𝜑 → {(𝑁 + 1)} ∈ V)
11 fzp1disj 12384 . . . 4 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
1211a1i 11 . . 3 (𝜑 → ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅)
13 0xr 10071 . . . . 5 0 ∈ ℝ*
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℝ*)
15 pnfxr 10077 . . . . 5 +∞ ∈ ℝ*
1615a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → +∞ ∈ ℝ*)
17 iccssxr 12241 . . . . 5 (0[,]+∞) ⊆ ℝ*
18 simpl 473 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝜑)
19 fzelp1 12378 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
2019adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
21 sge0p1.2 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
2218, 20, 21syl2anc 692 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
2317, 22sseldi 3593 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℝ*)
24 iccgelb 12215 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
2514, 16, 22, 24syl3anc 1324 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ 𝐴)
26 iccleub 12214 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 𝐴 ≤ +∞)
2714, 16, 22, 26syl3anc 1324 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ≤ +∞)
2814, 16, 23, 25, 27eliccxrd 39556 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
29 simpl 473 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝜑)
30 elsni 4185 . . . . . 6 (𝑘 ∈ {(𝑁 + 1)} → 𝑘 = (𝑁 + 1))
3130adantl 482 . . . . 5 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 = (𝑁 + 1))
32 simpr 477 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 = (𝑁 + 1))
33 peano2uz 11726 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
34 eluzfz2 12334 . . . . . . . 8 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
351, 33, 343syl 18 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3635adantr 481 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3732, 36eqeltrd 2699 . . . . 5 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3829, 31, 37syl2anc 692 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3929, 38, 21syl2anc 692 . . 3 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝐴 ∈ (0[,]+∞))
406, 8, 10, 12, 28, 39sge0splitmpt 40391 . 2 (𝜑 → (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))))
41 ovex 6663 . . . . 5 (𝑁 + 1) ∈ V
4241a1i 11 . . . 4 (𝜑 → (𝑁 + 1) ∈ V)
43 id 22 . . . . 5 (𝜑𝜑)
44 eleq1 2687 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))))
4544anbi2d 739 . . . . . . . 8 (𝑘 = (𝑁 + 1) → ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) ↔ (𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))))
46 sge0p1.3 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
4746eleq1d 2684 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
4845, 47imbi12d 334 . . . . . . 7 (𝑘 = (𝑁 + 1) → (((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))))
4948, 21vtoclg 3261 . . . . . 6 ((𝑁 + 1) ∈ V → ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞)))
5041, 49ax-mp 5 . . . . 5 ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))
5143, 35, 50syl2anc 692 . . . 4 (𝜑𝐵 ∈ (0[,]+∞))
5242, 51, 46sge0snmpt 40363 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴)) = 𝐵)
5352oveq2d 6651 . 2 (𝜑 → ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
545, 40, 533eqtrd 2658 1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  cun 3565  cin 3566  c0 3907  {csn 4168   class class class wbr 4644  cmpt 4720  cfv 5876  (class class class)co 6635  0cc0 9921  1c1 9922   + caddc 9924  +∞cpnf 10056  *cxr 10058  cle 10060  cuz 11672   +𝑒 cxad 11929  [,]cicc 12163  ...cfz 12311  Σ^csumge0 40342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-xadd 11932  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398  df-sumge0 40343
This theorem is referenced by:  caratheodorylem1  40503
  Copyright terms: Public domain W3C validator