MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinom Structured version   Visualization version   GIF version

Theorem srgbinom 19290
Description: The binomial theorem for commuting elements of a semiring: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)) (generalization of binom 15180). (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
Assertion
Ref Expression
srgbinom (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   ,𝑘   × ,𝑘   + ,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem srgbinom
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7156 . . . . . . 7 (𝑥 = 0 → (𝑥 (𝐴 + 𝐵)) = (0 (𝐴 + 𝐵)))
2 oveq2 7157 . . . . . . . . 9 (𝑥 = 0 → (0...𝑥) = (0...0))
3 oveq1 7156 . . . . . . . . . 10 (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘))
4 oveq1 7156 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑘) = (0 − 𝑘))
54oveq1d 7164 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑥𝑘) 𝐴) = ((0 − 𝑘) 𝐴))
65oveq1d 7164 . . . . . . . . . 10 (𝑥 = 0 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))
73, 6oveq12d 7167 . . . . . . . . 9 (𝑥 = 0 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))
82, 7mpteq12dv 5144 . . . . . . . 8 (𝑥 = 0 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))
98oveq2d 7165 . . . . . . 7 (𝑥 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
101, 9eqeq12d 2836 . . . . . 6 (𝑥 = 0 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))))
1110imbi2d 343 . . . . 5 (𝑥 = 0 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))))
12 oveq1 7156 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 (𝐴 + 𝐵)) = (𝑛 (𝐴 + 𝐵)))
13 oveq2 7157 . . . . . . . . 9 (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛))
14 oveq1 7156 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘))
15 oveq1 7156 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
1615oveq1d 7164 . . . . . . . . . . 11 (𝑥 = 𝑛 → ((𝑥𝑘) 𝐴) = ((𝑛𝑘) 𝐴))
1716oveq1d 7164 . . . . . . . . . 10 (𝑥 = 𝑛 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))
1814, 17oveq12d 7167 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))
1913, 18mpteq12dv 5144 . . . . . . . 8 (𝑥 = 𝑛 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))
2019oveq2d 7165 . . . . . . 7 (𝑥 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))
2112, 20eqeq12d 2836 . . . . . 6 (𝑥 = 𝑛 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))))
2221imbi2d 343 . . . . 5 (𝑥 = 𝑛 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))))
23 oveq1 7156 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑥 (𝐴 + 𝐵)) = ((𝑛 + 1) (𝐴 + 𝐵)))
24 oveq2 7157 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1)))
25 oveq1 7156 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘))
26 oveq1 7156 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝑥𝑘) = ((𝑛 + 1) − 𝑘))
2726oveq1d 7164 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝑥𝑘) 𝐴) = (((𝑛 + 1) − 𝑘) 𝐴))
2827oveq1d 7164 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))
2925, 28oveq12d 7167 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
3024, 29mpteq12dv 5144 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
3130oveq2d 7165 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
3223, 31eqeq12d 2836 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
3332imbi2d 343 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
34 oveq1 7156 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 (𝐴 + 𝐵)) = (𝑁 (𝐴 + 𝐵)))
35 oveq2 7157 . . . . . . . . 9 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
36 oveq1 7156 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘))
37 oveq1 7156 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥𝑘) = (𝑁𝑘))
3837oveq1d 7164 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑥𝑘) 𝐴) = ((𝑁𝑘) 𝐴))
3938oveq1d 7164 . . . . . . . . . 10 (𝑥 = 𝑁 → (((𝑥𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))
4036, 39oveq12d 7167 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
4135, 40mpteq12dv 5144 . . . . . . . 8 (𝑥 = 𝑁 → (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))
4241oveq2d 7165 . . . . . . 7 (𝑥 = 𝑁 → (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
4334, 42eqeq12d 2836 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵))))) ↔ (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
4443imbi2d 343 . . . . 5 (𝑥 = 𝑁 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑥 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑥) ↦ ((𝑥C𝑘) · (((𝑥𝑘) 𝐴) × (𝑘 𝐵)))))) ↔ ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))))
45 simpr1 1189 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐴𝑆)
46 srgbinom.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑅)
47 srgbinom.s . . . . . . . . . . . 12 𝑆 = (Base‘𝑅)
4846, 47mgpbas 19240 . . . . . . . . . . 11 𝑆 = (Base‘𝐺)
4945, 48eleqtrdi 2922 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐴 ∈ (Base‘𝐺))
50 eqid 2820 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
51 eqid 2820 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
52 srgbinom.e . . . . . . . . . . 11 = (.g𝐺)
5350, 51, 52mulg0 18226 . . . . . . . . . 10 (𝐴 ∈ (Base‘𝐺) → (0 𝐴) = (0g𝐺))
5449, 53syl 17 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 𝐴) = (0g𝐺))
55 simpr2 1190 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐵𝑆)
5655, 48eleqtrdi 2922 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝐵 ∈ (Base‘𝐺))
5750, 51, 52mulg0 18226 . . . . . . . . . 10 (𝐵 ∈ (Base‘𝐺) → (0 𝐵) = (0g𝐺))
5856, 57syl 17 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 𝐵) = (0g𝐺))
5954, 58oveq12d 7167 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((0 𝐴) × (0 𝐵)) = ((0g𝐺) × (0g𝐺)))
6059oveq2d 7165 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) = (1 · ((0g𝐺) × (0g𝐺))))
61 eqid 2820 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
6247, 61srgidcl 19263 . . . . . . . . . . . . 13 (𝑅 ∈ SRing → (1r𝑅) ∈ 𝑆)
6362ancli 551 . . . . . . . . . . . 12 (𝑅 ∈ SRing → (𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆))
6463adantr 483 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆))
65 srgbinom.m . . . . . . . . . . . 12 × = (.r𝑅)
6647, 65, 61srglidm 19266 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (1r𝑅) ∈ 𝑆) → ((1r𝑅) × (1r𝑅)) = (1r𝑅))
6764, 66syl 17 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((1r𝑅) × (1r𝑅)) = (1r𝑅))
6867oveq2d 7165 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((1r𝑅) × (1r𝑅))) = (1 · (1r𝑅)))
69 eqid 2820 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
7069, 61srgidcl 19263 . . . . . . . . . . 11 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
71 srgbinom.t . . . . . . . . . . . 12 · = (.g𝑅)
7269, 71mulg1 18230 . . . . . . . . . . 11 ((1r𝑅) ∈ (Base‘𝑅) → (1 · (1r𝑅)) = (1r𝑅))
7370, 72syl 17 . . . . . . . . . 10 (𝑅 ∈ SRing → (1 · (1r𝑅)) = (1r𝑅))
7473adantr 483 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · (1r𝑅)) = (1r𝑅))
7568, 74eqtrd 2855 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅))
7646, 61ringidval 19248 . . . . . . . . 9 (1r𝑅) = (0g𝐺)
77 id 22 . . . . . . . . . . . 12 ((1r𝑅) = (0g𝐺) → (1r𝑅) = (0g𝐺))
7877, 77oveq12d 7167 . . . . . . . . . . 11 ((1r𝑅) = (0g𝐺) → ((1r𝑅) × (1r𝑅)) = ((0g𝐺) × (0g𝐺)))
7978oveq2d 7165 . . . . . . . . . 10 ((1r𝑅) = (0g𝐺) → (1 · ((1r𝑅) × (1r𝑅))) = (1 · ((0g𝐺) × (0g𝐺))))
8079, 77eqeq12d 2836 . . . . . . . . 9 ((1r𝑅) = (0g𝐺) → ((1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅) ↔ (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺)))
8176, 80ax-mp 5 . . . . . . . 8 ((1 · ((1r𝑅) × (1r𝑅))) = (1r𝑅) ↔ (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺))
8275, 81sylib 220 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0g𝐺) × (0g𝐺))) = (0g𝐺))
8360, 82eqtrd 2855 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) = (0g𝐺))
84 fz0sn 13004 . . . . . . . . . 10 (0...0) = {0}
8584a1i 11 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0...0) = {0})
8685mpteq1d 5148 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵)))))
8786oveq2d 7165 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
88 srgmnd 19254 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
8988adantr 483 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 𝑅 ∈ Mnd)
90 c0ex 10628 . . . . . . . . 9 0 ∈ V
9190a1i 11 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → 0 ∈ V)
9276, 62eqeltrrid 2917 . . . . . . . . . 10 (𝑅 ∈ SRing → (0g𝐺) ∈ 𝑆)
9392adantr 483 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0g𝐺) ∈ 𝑆)
9483, 93eqeltrd 2912 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (1 · ((0 𝐴) × (0 𝐵))) ∈ 𝑆)
95 oveq2 7157 . . . . . . . . . . 11 (𝑘 = 0 → (0C𝑘) = (0C0))
96 0nn0 11906 . . . . . . . . . . . 12 0 ∈ ℕ0
97 bcn0 13667 . . . . . . . . . . . 12 (0 ∈ ℕ0 → (0C0) = 1)
9896, 97ax-mp 5 . . . . . . . . . . 11 (0C0) = 1
9995, 98syl6eq 2871 . . . . . . . . . 10 (𝑘 = 0 → (0C𝑘) = 1)
100 oveq2 7157 . . . . . . . . . . . . 13 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
101 0m0e0 11751 . . . . . . . . . . . . 13 (0 − 0) = 0
102100, 101syl6eq 2871 . . . . . . . . . . . 12 (𝑘 = 0 → (0 − 𝑘) = 0)
103102oveq1d 7164 . . . . . . . . . . 11 (𝑘 = 0 → ((0 − 𝑘) 𝐴) = (0 𝐴))
104 oveq1 7156 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 𝐵) = (0 𝐵))
105103, 104oveq12d 7167 . . . . . . . . . 10 (𝑘 = 0 → (((0 − 𝑘) 𝐴) × (𝑘 𝐵)) = ((0 𝐴) × (0 𝐵)))
10699, 105oveq12d 7167 . . . . . . . . 9 (𝑘 = 0 → ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))) = (1 · ((0 𝐴) × (0 𝐵))))
10747, 106gsumsn 19069 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 0 ∈ V ∧ (1 · ((0 𝐴) × (0 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
10889, 91, 94, 107syl3anc 1366 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
10987, 108eqtrd 2855 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))) = (1 · ((0 𝐴) × (0 𝐵))))
110 srgbinom.a . . . . . . . . . 10 + = (+g𝑅)
11147, 110mndcl 17914 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
11289, 45, 55, 111syl3anc 1366 . . . . . . . 8 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝐴 + 𝐵) ∈ 𝑆)
113112, 48eleqtrdi 2922 . . . . . . 7 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝐴 + 𝐵) ∈ (Base‘𝐺))
11450, 51, 52mulg0 18226 . . . . . . 7 ((𝐴 + 𝐵) ∈ (Base‘𝐺) → (0 (𝐴 + 𝐵)) = (0g𝐺))
115113, 114syl 17 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (0g𝐺))
11683, 109, 1153eqtr4rd 2866 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (0 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...0) ↦ ((0C𝑘) · (((0 − 𝑘) 𝐴) × (𝑘 𝐵))))))
117 simprl 769 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝑅 ∈ SRing)
11845adantl 484 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝐴𝑆)
11955adantl 484 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝐵𝑆)
120 simprr3 1218 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → (𝐴 × 𝐵) = (𝐵 × 𝐴))
121 simpl 485 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) → 𝑛 ∈ ℕ0)
122 id 22 . . . . . . . 8 ((𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))))
12347, 65, 71, 110, 46, 52, 117, 118, 119, 120, 121, 122srgbinomlem 19289 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ (𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)))) ∧ (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
124123exp31 422 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵))))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
125124a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → (((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑛 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑛C𝑘) · (((𝑛𝑘) 𝐴) × (𝑘 𝐵)))))) → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → ((𝑛 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑛 + 1)) ↦ (((𝑛 + 1)C𝑘) · ((((𝑛 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))))
12611, 22, 33, 44, 116, 125nn0ind 12071 . . . 4 (𝑁 ∈ ℕ0 → ((𝑅 ∈ SRing ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
127126expd 418 . . 3 (𝑁 ∈ ℕ0 → (𝑅 ∈ SRing → ((𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))))
128127impcom 410 . 2 ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → ((𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))))))
129128imp 409 1 (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  Vcvv 3491  {csn 4560  cmpt 5139  cfv 6348  (class class class)co 7149  0cc0 10530  1c1 10531   + caddc 10533  cmin 10863  0cn0 11891  ...cfz 12889  Ccbc 13659  Basecbs 16478  +gcplusg 16560  .rcmulr 16561  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  .gcmg 18219  mulGrpcmgp 19234  1rcur 19246  SRingcsrg 19250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12890  df-fzo 13031  df-seq 13367  df-fac 13631  df-bc 13660  df-hash 13688  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-gsum 16711  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-mgp 19235  df-ur 19247  df-srg 19251
This theorem is referenced by:  csrgbinom  19291
  Copyright terms: Public domain W3C validator