MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem5 Structured version   Visualization version   GIF version

Theorem vdwlem5 15613
Description: Lemma for vdw 15622. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (#‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem5 (𝜑𝑇 ∈ ℕ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem5
StepHypRef Expression
1 vdwlem6.t . 2 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
2 vdwlem6.b . . 3 (𝜑𝐵 ∈ ℕ)
3 vdwlem3.w . . . . 5 (𝜑𝑊 ∈ ℕ)
43nnnn0d 11295 . . . 4 (𝜑𝑊 ∈ ℕ0)
5 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
6 vdwlem3.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℕ)
76nncnd 10980 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
8 vdwlem7.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℕ)
98nncnd 10980 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
107, 9subcld 10336 . . . . . . . 8 (𝜑 → (𝑉𝐷) ∈ ℂ)
115nncnd 10980 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210, 11npcand 10340 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) = (𝑉𝐷))
137, 9, 11subsub4d 10367 . . . . . . . . . 10 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐷 + 𝐴)))
149, 11addcomd 10182 . . . . . . . . . . 11 (𝜑 → (𝐷 + 𝐴) = (𝐴 + 𝐷))
1514oveq2d 6620 . . . . . . . . . 10 (𝜑 → (𝑉 − (𝐷 + 𝐴)) = (𝑉 − (𝐴 + 𝐷)))
1613, 15eqtrd 2655 . . . . . . . . 9 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐴 + 𝐷)))
17 cnvimass 5444 . . . . . . . . . . . . 13 (𝐹 “ {𝐺}) ⊆ dom 𝐹
18 vdwlem4.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Fin)
19 vdwlem4.h . . . . . . . . . . . . . . 15 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
20 vdwlem4.f . . . . . . . . . . . . . . 15 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
216, 3, 18, 19, 20vdwlem4 15612 . . . . . . . . . . . . . 14 (𝜑𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
22 fdm 6008 . . . . . . . . . . . . . 14 (𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)) → dom 𝐹 = (1...𝑉))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (1...𝑉))
2417, 23syl5sseq 3632 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ {𝐺}) ⊆ (1...𝑉))
25 vdwlem7.s . . . . . . . . . . . . 13 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
26 ssun2 3755 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
27 vdwlem7.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ (ℤ‘2))
28 uz2m1nn 11707 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ)
305, 8nnaddcld 11011 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐷) ∈ ℕ)
31 vdwapid1 15603 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3229, 30, 8, 31syl3anc 1323 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3326, 32sseldi 3581 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
34 eluz2nn 11670 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
3527, 34syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ)
3635nncnd 10980 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℂ)
37 ax-1cn 9938 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
38 npcan 10234 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3936, 37, 38sylancl 693 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
4039fveq2d 6152 . . . . . . . . . . . . . . . 16 (𝜑 → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾))
4140oveqd 6621 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷))
42 nnm1nn0 11278 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
4335, 42syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ0)
44 vdwapun 15602 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4543, 5, 8, 44syl3anc 1323 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4641, 45eqtr3d 2657 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4733, 46eleqtrrd 2701 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷))
4825, 47sseldd 3584 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐷) ∈ (𝐹 “ {𝐺}))
4924, 48sseldd 3584 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑉))
50 elfzuz3 12281 . . . . . . . . . . 11 ((𝐴 + 𝐷) ∈ (1...𝑉) → 𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
5149, 50syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
52 uznn0sub 11663 . . . . . . . . . 10 (𝑉 ∈ (ℤ‘(𝐴 + 𝐷)) → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5416, 53eqeltrd 2698 . . . . . . . 8 (𝜑 → ((𝑉𝐷) − 𝐴) ∈ ℕ0)
55 nn0nnaddcl 11268 . . . . . . . 8 ((((𝑉𝐷) − 𝐴) ∈ ℕ0𝐴 ∈ ℕ) → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5654, 5, 55syl2anc 692 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5712, 56eqeltrrd 2699 . . . . . 6 (𝜑 → (𝑉𝐷) ∈ ℕ)
585, 57nnaddcld 11011 . . . . 5 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℕ)
59 nnm1nn0 11278 . . . . 5 ((𝐴 + (𝑉𝐷)) ∈ ℕ → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
6058, 59syl 17 . . . 4 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
614, 60nn0mulcld 11300 . . 3 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0)
62 nnnn0addcl 11267 . . 3 ((𝐵 ∈ ℕ ∧ (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0) → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
632, 61, 62syl2anc 692 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
641, 63syl5eqel 2702 1 (𝜑𝑇 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wral 2907  cun 3553  wss 3555  ifcif 4058  {csn 4148  cmpt 4673  ccnv 5073  dom cdm 5074  ran crn 5075  cima 5077  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  Fincfn 7899  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cmin 10210  cn 10964  2c2 11014  0cn0 11236  cuz 11631  ...cfz 12268  #chash 13057  APcvdwa 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-vdwap 15596
This theorem is referenced by:  vdwlem6  15614
  Copyright terms: Public domain W3C validator