ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strsl0 Unicode version

Theorem strsl0 12881
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypothesis
Ref Expression
strsl0.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
Assertion
Ref Expression
strsl0  |-  (/)  =  ( E `  (/) )

Proof of Theorem strsl0
StepHypRef Expression
1 0ex 4171 . . 3  |-  (/)  e.  _V
2 strsl0.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
32simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
42simpri 113 . . 3  |-  ( E `
 ndx )  e.  NN
51, 3, 4strnfvn 12853 . 2  |-  ( E `
 (/) )  =  (
(/) `  ( E `  ndx ) )
6 0fv 5612 . 2  |-  ( (/) `  ( E `  ndx ) )  =  (/)
75, 6eqtr2i 2227 1  |-  (/)  =  ( E `  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   (/)c0 3460   ` cfv 5271   NNcn 9036   ndxcnx 12829  Slot cslot 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-slot 12836
This theorem is referenced by:  base0  12882  iedgval0  15649
  Copyright terms: Public domain W3C validator