Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpmlem | Unicode version |
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.) |
Ref | Expression |
---|---|
xpmlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eeanv 1912 | . . 3 | |
2 | vex 2715 | . . . . . 6 | |
3 | vex 2715 | . . . . . 6 | |
4 | 2, 3 | opex 4189 | . . . . 5 |
5 | eleq1 2220 | . . . . . 6 | |
6 | opelxp 4616 | . . . . . 6 | |
7 | 5, 6 | bitrdi 195 | . . . . 5 |
8 | 4, 7 | spcev 2807 | . . . 4 |
9 | 8 | exlimivv 1876 | . . 3 |
10 | 1, 9 | sylbir 134 | . 2 |
11 | elxp 4603 | . . . . 5 | |
12 | simpr 109 | . . . . . 6 | |
13 | 12 | 2eximi 1581 | . . . . 5 |
14 | 11, 13 | sylbi 120 | . . . 4 |
15 | 14 | exlimiv 1578 | . . 3 |
16 | 15, 1 | sylib 121 | . 2 |
17 | 10, 16 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 cop 3563 cxp 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-xp 4592 |
This theorem is referenced by: xpm 5007 |
Copyright terms: Public domain | W3C validator |