ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmlem Unicode version

Theorem xpmlem 5024
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 11-Dec-2018.)
Assertion
Ref Expression
xpmlem  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Distinct variable groups:    x, y, z, A    x, B, y, z

Proof of Theorem xpmlem
StepHypRef Expression
1 eeanv 1920 . . 3  |-  ( E. x E. y ( x  e.  A  /\  y  e.  B )  <->  ( E. x  x  e.  A  /\  E. y 
y  e.  B ) )
2 vex 2729 . . . . . 6  |-  x  e. 
_V
3 vex 2729 . . . . . 6  |-  y  e. 
_V
42, 3opex 4207 . . . . 5  |-  <. x ,  y >.  e.  _V
5 eleq1 2229 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
6 opelxp 4634 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
75, 6bitrdi 195 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
84, 7spcev 2821 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  E. z  z  e.  ( A  X.  B
) )
98exlimivv 1884 . . 3  |-  ( E. x E. y ( x  e.  A  /\  y  e.  B )  ->  E. z  z  e.  ( A  X.  B
) )
101, 9sylbir 134 . 2  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  E. z  z  e.  ( A  X.  B
) )
11 elxp 4621 . . . . 5  |-  ( z  e.  ( A  X.  B )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
12 simpr 109 . . . . . 6  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( x  e.  A  /\  y  e.  B ) )
13122eximi 1589 . . . . 5  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  ->  E. x E. y ( x  e.  A  /\  y  e.  B ) )
1411, 13sylbi 120 . . . 4  |-  ( z  e.  ( A  X.  B )  ->  E. x E. y ( x  e.  A  /\  y  e.  B ) )
1514exlimiv 1586 . . 3  |-  ( E. z  z  e.  ( A  X.  B )  ->  E. x E. y
( x  e.  A  /\  y  e.  B
) )
1615, 1sylib 121 . 2  |-  ( E. z  z  e.  ( A  X.  B )  ->  ( E. x  x  e.  A  /\  E. y  y  e.  B
) )
1710, 16impbii 125 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044  df-xp 4610
This theorem is referenced by:  xpm  5025
  Copyright terms: Public domain W3C validator