ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fseq1m1p1 Unicode version

Theorem fseq1m1p1 10187
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
fseq1m1p1.1  |-  H  =  { <. N ,  B >. }
Assertion
Ref Expression
fseq1m1p1  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H
) )  <->  ( G : ( 1 ... N ) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )

Proof of Theorem fseq1m1p1
StepHypRef Expression
1 nnm1nn0 9307 . . 3  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
2 eqid 2196 . . . 4  |-  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  { <. ( ( N  -  1 )  +  1 ) ,  B >. }
32fseq1p1m1 10186 . . 3  |-  ( ( N  -  1 )  e.  NN0  ->  ( ( F : ( 1 ... ( N  - 
1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. (
( N  -  1 )  +  1 ) ,  B >. } ) )  <->  ( G :
( 1 ... (
( N  -  1 )  +  1 ) ) --> A  /\  ( G `  ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
41, 3syl 14 . 2  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. ( ( N  - 
1 )  +  1 ) ,  B >. } ) )  <->  ( G : ( 1 ... ( ( N  - 
1 )  +  1 ) ) --> A  /\  ( G `  ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
5 nncn 9015 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
6 ax-1cn 7989 . . . . . . . . 9  |-  1  e.  CC
7 npcan 8252 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
85, 6, 7sylancl 413 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
98opeq1d 3815 . . . . . . 7  |-  ( N  e.  NN  ->  <. (
( N  -  1 )  +  1 ) ,  B >.  =  <. N ,  B >. )
109sneqd 3636 . . . . . 6  |-  ( N  e.  NN  ->  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  { <. N ,  B >. } )
11 fseq1m1p1.1 . . . . . 6  |-  H  =  { <. N ,  B >. }
1210, 11eqtr4di 2247 . . . . 5  |-  ( N  e.  NN  ->  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  H )
1312uneq2d 3318 . . . 4  |-  ( N  e.  NN  ->  ( F  u.  { <. (
( N  -  1 )  +  1 ) ,  B >. } )  =  ( F  u.  H ) )
1413eqeq2d 2208 . . 3  |-  ( N  e.  NN  ->  ( G  =  ( F  u.  { <. ( ( N  -  1 )  +  1 ) ,  B >. } )  <->  G  =  ( F  u.  H
) ) )
15143anbi3d 1329 . 2  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. ( ( N  - 
1 )  +  1 ) ,  B >. } ) )  <->  ( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H ) ) ) )
168oveq2d 5941 . . . 4  |-  ( N  e.  NN  ->  (
1 ... ( ( N  -  1 )  +  1 ) )  =  ( 1 ... N
) )
1716feq2d 5398 . . 3  |-  ( N  e.  NN  ->  ( G : ( 1 ... ( ( N  - 
1 )  +  1 ) ) --> A  <->  G :
( 1 ... N
) --> A ) )
188fveq2d 5565 . . . 4  |-  ( N  e.  NN  ->  ( G `  ( ( N  -  1 )  +  1 ) )  =  ( G `  N ) )
1918eqeq1d 2205 . . 3  |-  ( N  e.  NN  ->  (
( G `  (
( N  -  1 )  +  1 ) )  =  B  <->  ( G `  N )  =  B ) )
2017, 193anbi12d 1324 . 2  |-  ( N  e.  NN  ->  (
( G : ( 1 ... ( ( N  -  1 )  +  1 ) ) --> A  /\  ( G `
 ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  (
1 ... ( N  - 
1 ) ) ) )  <->  ( G :
( 1 ... N
) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  (
1 ... ( N  - 
1 ) ) ) ) ) )
214, 15, 203bitr3d 218 1  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H
) )  <->  ( G : ( 1 ... N ) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    u. cun 3155   {csn 3623   <.cop 3626    |` cres 4666   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    - cmin 8214   NNcn 9007   NN0cn0 9266   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator