ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fseq1m1p1 Unicode version

Theorem fseq1m1p1 10252
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
fseq1m1p1.1  |-  H  =  { <. N ,  B >. }
Assertion
Ref Expression
fseq1m1p1  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H
) )  <->  ( G : ( 1 ... N ) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )

Proof of Theorem fseq1m1p1
StepHypRef Expression
1 nnm1nn0 9371 . . 3  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
2 eqid 2207 . . . 4  |-  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  { <. ( ( N  -  1 )  +  1 ) ,  B >. }
32fseq1p1m1 10251 . . 3  |-  ( ( N  -  1 )  e.  NN0  ->  ( ( F : ( 1 ... ( N  - 
1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. (
( N  -  1 )  +  1 ) ,  B >. } ) )  <->  ( G :
( 1 ... (
( N  -  1 )  +  1 ) ) --> A  /\  ( G `  ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
41, 3syl 14 . 2  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. ( ( N  - 
1 )  +  1 ) ,  B >. } ) )  <->  ( G : ( 1 ... ( ( N  - 
1 )  +  1 ) ) --> A  /\  ( G `  ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
5 nncn 9079 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
6 ax-1cn 8053 . . . . . . . . 9  |-  1  e.  CC
7 npcan 8316 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
85, 6, 7sylancl 413 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
98opeq1d 3839 . . . . . . 7  |-  ( N  e.  NN  ->  <. (
( N  -  1 )  +  1 ) ,  B >.  =  <. N ,  B >. )
109sneqd 3656 . . . . . 6  |-  ( N  e.  NN  ->  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  { <. N ,  B >. } )
11 fseq1m1p1.1 . . . . . 6  |-  H  =  { <. N ,  B >. }
1210, 11eqtr4di 2258 . . . . 5  |-  ( N  e.  NN  ->  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  H )
1312uneq2d 3335 . . . 4  |-  ( N  e.  NN  ->  ( F  u.  { <. (
( N  -  1 )  +  1 ) ,  B >. } )  =  ( F  u.  H ) )
1413eqeq2d 2219 . . 3  |-  ( N  e.  NN  ->  ( G  =  ( F  u.  { <. ( ( N  -  1 )  +  1 ) ,  B >. } )  <->  G  =  ( F  u.  H
) ) )
15143anbi3d 1331 . 2  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. ( ( N  - 
1 )  +  1 ) ,  B >. } ) )  <->  ( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H ) ) ) )
168oveq2d 5983 . . . 4  |-  ( N  e.  NN  ->  (
1 ... ( ( N  -  1 )  +  1 ) )  =  ( 1 ... N
) )
1716feq2d 5433 . . 3  |-  ( N  e.  NN  ->  ( G : ( 1 ... ( ( N  - 
1 )  +  1 ) ) --> A  <->  G :
( 1 ... N
) --> A ) )
188fveq2d 5603 . . . 4  |-  ( N  e.  NN  ->  ( G `  ( ( N  -  1 )  +  1 ) )  =  ( G `  N ) )
1918eqeq1d 2216 . . 3  |-  ( N  e.  NN  ->  (
( G `  (
( N  -  1 )  +  1 ) )  =  B  <->  ( G `  N )  =  B ) )
2017, 193anbi12d 1326 . 2  |-  ( N  e.  NN  ->  (
( G : ( 1 ... ( ( N  -  1 )  +  1 ) ) --> A  /\  ( G `
 ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  (
1 ... ( N  - 
1 ) ) ) )  <->  ( G :
( 1 ... N
) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  (
1 ... ( N  - 
1 ) ) ) ) ) )
214, 15, 203bitr3d 218 1  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H
) )  <->  ( G : ( 1 ... N ) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    u. cun 3172   {csn 3643   <.cop 3646    |` cres 4695   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    - cmin 8278   NNcn 9071   NN0cn0 9330   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator