ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fseq1m1p1 Unicode version

Theorem fseq1m1p1 10164
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
fseq1m1p1.1  |-  H  =  { <. N ,  B >. }
Assertion
Ref Expression
fseq1m1p1  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H
) )  <->  ( G : ( 1 ... N ) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )

Proof of Theorem fseq1m1p1
StepHypRef Expression
1 nnm1nn0 9284 . . 3  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
2 eqid 2193 . . . 4  |-  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  { <. ( ( N  -  1 )  +  1 ) ,  B >. }
32fseq1p1m1 10163 . . 3  |-  ( ( N  -  1 )  e.  NN0  ->  ( ( F : ( 1 ... ( N  - 
1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. (
( N  -  1 )  +  1 ) ,  B >. } ) )  <->  ( G :
( 1 ... (
( N  -  1 )  +  1 ) ) --> A  /\  ( G `  ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
41, 3syl 14 . 2  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. ( ( N  - 
1 )  +  1 ) ,  B >. } ) )  <->  ( G : ( 1 ... ( ( N  - 
1 )  +  1 ) ) --> A  /\  ( G `  ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
5 nncn 8992 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
6 ax-1cn 7967 . . . . . . . . 9  |-  1  e.  CC
7 npcan 8230 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
85, 6, 7sylancl 413 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
98opeq1d 3811 . . . . . . 7  |-  ( N  e.  NN  ->  <. (
( N  -  1 )  +  1 ) ,  B >.  =  <. N ,  B >. )
109sneqd 3632 . . . . . 6  |-  ( N  e.  NN  ->  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  { <. N ,  B >. } )
11 fseq1m1p1.1 . . . . . 6  |-  H  =  { <. N ,  B >. }
1210, 11eqtr4di 2244 . . . . 5  |-  ( N  e.  NN  ->  { <. ( ( N  -  1 )  +  1 ) ,  B >. }  =  H )
1312uneq2d 3314 . . . 4  |-  ( N  e.  NN  ->  ( F  u.  { <. (
( N  -  1 )  +  1 ) ,  B >. } )  =  ( F  u.  H ) )
1413eqeq2d 2205 . . 3  |-  ( N  e.  NN  ->  ( G  =  ( F  u.  { <. ( ( N  -  1 )  +  1 ) ,  B >. } )  <->  G  =  ( F  u.  H
) ) )
15143anbi3d 1329 . 2  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  { <. ( ( N  - 
1 )  +  1 ) ,  B >. } ) )  <->  ( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H ) ) ) )
168oveq2d 5935 . . . 4  |-  ( N  e.  NN  ->  (
1 ... ( ( N  -  1 )  +  1 ) )  =  ( 1 ... N
) )
1716feq2d 5392 . . 3  |-  ( N  e.  NN  ->  ( G : ( 1 ... ( ( N  - 
1 )  +  1 ) ) --> A  <->  G :
( 1 ... N
) --> A ) )
188fveq2d 5559 . . . 4  |-  ( N  e.  NN  ->  ( G `  ( ( N  -  1 )  +  1 ) )  =  ( G `  N ) )
1918eqeq1d 2202 . . 3  |-  ( N  e.  NN  ->  (
( G `  (
( N  -  1 )  +  1 ) )  =  B  <->  ( G `  N )  =  B ) )
2017, 193anbi12d 1324 . 2  |-  ( N  e.  NN  ->  (
( G : ( 1 ... ( ( N  -  1 )  +  1 ) ) --> A  /\  ( G `
 ( ( N  -  1 )  +  1 ) )  =  B  /\  F  =  ( G  |`  (
1 ... ( N  - 
1 ) ) ) )  <->  ( G :
( 1 ... N
) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  (
1 ... ( N  - 
1 ) ) ) ) ) )
214, 15, 203bitr3d 218 1  |-  ( N  e.  NN  ->  (
( F : ( 1 ... ( N  -  1 ) ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H
) )  <->  ( G : ( 1 ... N ) --> A  /\  ( G `  N )  =  B  /\  F  =  ( G  |`  ( 1 ... ( N  -  1 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    u. cun 3152   {csn 3619   <.cop 3622    |` cres 4662   -->wf 5251   ` cfv 5255  (class class class)co 5919   CCcc 7872   1c1 7875    + caddc 7877    - cmin 8192   NNcn 8984   NN0cn0 9243   ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator