ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemex Unicode version

Theorem divalglemex 12348
Description: Lemma for divalg 12350. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemex  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemex
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  N  e.  ZZ )
2 simpl2 1004 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  e.  ZZ )
32znegcld 9532 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  -u D  e.  ZZ )
4 simpr 110 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  <  0 )
52zred 9530 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  e.  RR )
65lt0neg1d 8623 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
( D  <  0  <->  0  <  -u D ) )
74, 6mpbid 147 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
0  <  -u D )
8 elnnz 9417 . . . . 5  |-  ( -u D  e.  NN  <->  ( -u D  e.  ZZ  /\  0  <  -u D ) )
93, 7, 8sylanbrc 417 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  -u D  e.  NN )
10 divalglemnn 12344 . . . 4  |-  ( ( N  e.  ZZ  /\  -u D  e.  NN )  ->  E. r  e.  ZZ  E. k  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )
111, 9, 10syl2anc 411 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  E. r  e.  ZZ  E. k  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )
12 simplr 528 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
k  e.  ZZ )
1312znegcld 9532 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  -u k  e.  ZZ )
14 simpr1 1006 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
0  <_  r )
15 simpr2 1007 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
r  <  ( abs `  -u D ) )
16 simpll2 1040 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  ->  D  e.  ZZ )
1716ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  D  e.  ZZ )
1817zcnd 9531 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  D  e.  CC )
1918absnegd 11615 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( abs `  -u D
)  =  ( abs `  D ) )
2015, 19breqtrd 4085 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
21 simpr3 1008 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  N  =  ( (
k  x.  -u D
)  +  r ) )
2212zcnd 9531 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
k  e.  CC )
23 mulneg12 8504 . . . . . . . . . 10  |-  ( ( k  e.  CC  /\  D  e.  CC )  ->  ( -u k  x.  D )  =  ( k  x.  -u D
) )
2422, 18, 23syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( -u k  x.  D
)  =  ( k  x.  -u D ) )
2524oveq1d 5982 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( ( -u k  x.  D )  +  r )  =  ( ( k  x.  -u D
)  +  r ) )
2621, 25eqtr4d 2243 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  N  =  ( ( -u k  x.  D )  +  r ) )
27 oveq1 5974 . . . . . . . . . . 11  |-  ( q  =  -u k  ->  (
q  x.  D )  =  ( -u k  x.  D ) )
2827oveq1d 5982 . . . . . . . . . 10  |-  ( q  =  -u k  ->  (
( q  x.  D
)  +  r )  =  ( ( -u k  x.  D )  +  r ) )
2928eqeq2d 2219 . . . . . . . . 9  |-  ( q  =  -u k  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( -u k  x.  D )  +  r ) ) )
30293anbi3d 1331 . . . . . . . 8  |-  ( q  =  -u k  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( -u k  x.  D )  +  r ) ) ) )
3130rspcev 2884 . . . . . . 7  |-  ( (
-u k  e.  ZZ  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( -u k  x.  D )  +  r ) ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
3213, 14, 20, 26, 31syl13anc 1252 . . . . . 6  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
3332ex 115 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  ->  (
( 0  <_  r  /\  r  <  ( abs `  -u D )  /\  N  =  ( (
k  x.  -u D
)  +  r ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3433rexlimdva 2625 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  ->  ( E. k  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  -u D )  /\  N  =  ( (
k  x.  -u D
)  +  r ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3534reximdva 2610 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
( E. r  e.  ZZ  E. k  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3611, 35mpd 13 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
37 simpr 110 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  D  =  0 )
38 simpl3 1005 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  D  =/=  0
)
3937, 38pm2.21ddne 2461 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
40 simpl1 1003 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  N  e.  ZZ )
41 simpl2 1004 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  D  e.  ZZ )
42 simpr 110 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  -> 
0  <  D )
43 elnnz 9417 . . . 4  |-  ( D  e.  NN  <->  ( D  e.  ZZ  /\  0  < 
D ) )
4441, 42, 43sylanbrc 417 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  D  e.  NN )
45 divalglemnn 12344 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
4640, 44, 45syl2anc 411 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
47 ztri3or0 9449 . . 3  |-  ( D  e.  ZZ  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
48473ad2ant2 1022 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
4936, 39, 46, 48mpjao3dan 1320 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143   -ucneg 8279   NNcn 9071   ZZcz 9407   abscabs 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425
This theorem is referenced by:  divalglemeuneg  12349
  Copyright terms: Public domain W3C validator