ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemex Unicode version

Theorem divalglemex 12104
Description: Lemma for divalg 12106. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemex  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemex
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  N  e.  ZZ )
2 simpl2 1003 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  e.  ZZ )
32znegcld 9467 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  -u D  e.  ZZ )
4 simpr 110 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  <  0 )
52zred 9465 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  e.  RR )
65lt0neg1d 8559 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
( D  <  0  <->  0  <  -u D ) )
74, 6mpbid 147 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
0  <  -u D )
8 elnnz 9353 . . . . 5  |-  ( -u D  e.  NN  <->  ( -u D  e.  ZZ  /\  0  <  -u D ) )
93, 7, 8sylanbrc 417 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  -u D  e.  NN )
10 divalglemnn 12100 . . . 4  |-  ( ( N  e.  ZZ  /\  -u D  e.  NN )  ->  E. r  e.  ZZ  E. k  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )
111, 9, 10syl2anc 411 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  E. r  e.  ZZ  E. k  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )
12 simplr 528 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
k  e.  ZZ )
1312znegcld 9467 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  -u k  e.  ZZ )
14 simpr1 1005 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
0  <_  r )
15 simpr2 1006 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
r  <  ( abs `  -u D ) )
16 simpll2 1039 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  ->  D  e.  ZZ )
1716ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  D  e.  ZZ )
1817zcnd 9466 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  D  e.  CC )
1918absnegd 11371 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( abs `  -u D
)  =  ( abs `  D ) )
2015, 19breqtrd 4060 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
21 simpr3 1007 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  N  =  ( (
k  x.  -u D
)  +  r ) )
2212zcnd 9466 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
k  e.  CC )
23 mulneg12 8440 . . . . . . . . . 10  |-  ( ( k  e.  CC  /\  D  e.  CC )  ->  ( -u k  x.  D )  =  ( k  x.  -u D
) )
2422, 18, 23syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( -u k  x.  D
)  =  ( k  x.  -u D ) )
2524oveq1d 5940 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( ( -u k  x.  D )  +  r )  =  ( ( k  x.  -u D
)  +  r ) )
2621, 25eqtr4d 2232 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  N  =  ( ( -u k  x.  D )  +  r ) )
27 oveq1 5932 . . . . . . . . . . 11  |-  ( q  =  -u k  ->  (
q  x.  D )  =  ( -u k  x.  D ) )
2827oveq1d 5940 . . . . . . . . . 10  |-  ( q  =  -u k  ->  (
( q  x.  D
)  +  r )  =  ( ( -u k  x.  D )  +  r ) )
2928eqeq2d 2208 . . . . . . . . 9  |-  ( q  =  -u k  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( -u k  x.  D )  +  r ) ) )
30293anbi3d 1329 . . . . . . . 8  |-  ( q  =  -u k  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( -u k  x.  D )  +  r ) ) ) )
3130rspcev 2868 . . . . . . 7  |-  ( (
-u k  e.  ZZ  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( -u k  x.  D )  +  r ) ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
3213, 14, 20, 26, 31syl13anc 1251 . . . . . 6  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
3332ex 115 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  ->  (
( 0  <_  r  /\  r  <  ( abs `  -u D )  /\  N  =  ( (
k  x.  -u D
)  +  r ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3433rexlimdva 2614 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  ->  ( E. k  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  -u D )  /\  N  =  ( (
k  x.  -u D
)  +  r ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3534reximdva 2599 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
( E. r  e.  ZZ  E. k  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3611, 35mpd 13 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
37 simpr 110 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  D  =  0 )
38 simpl3 1004 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  D  =/=  0
)
3937, 38pm2.21ddne 2450 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
40 simpl1 1002 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  N  e.  ZZ )
41 simpl2 1003 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  D  e.  ZZ )
42 simpr 110 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  -> 
0  <  D )
43 elnnz 9353 . . . 4  |-  ( D  e.  NN  <->  ( D  e.  ZZ  /\  0  < 
D ) )
4441, 42, 43sylanbrc 417 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  D  e.  NN )
45 divalglemnn 12100 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
4640, 44, 45syl2anc 411 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
47 ztri3or0 9385 . . 3  |-  ( D  e.  ZZ  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
48473ad2ant2 1021 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
4936, 39, 46, 48mpjao3dan 1318 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079   -ucneg 8215   NNcn 9007   ZZcz 9343   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  divalglemeuneg  12105
  Copyright terms: Public domain W3C validator