ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemex Unicode version

Theorem divalglemex 11414
Description: Lemma for divalg 11416. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemex  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemex
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpl1 952 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  N  e.  ZZ )
2 simpl2 953 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  e.  ZZ )
32znegcld 9027 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  -u D  e.  ZZ )
4 simpr 109 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  <  0 )
52zred 9025 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  D  e.  RR )
65lt0neg1d 8144 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
( D  <  0  <->  0  <  -u D ) )
74, 6mpbid 146 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
0  <  -u D )
8 elnnz 8916 . . . . 5  |-  ( -u D  e.  NN  <->  ( -u D  e.  ZZ  /\  0  <  -u D ) )
93, 7, 8sylanbrc 411 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  -u D  e.  NN )
10 divalglemnn 11410 . . . 4  |-  ( ( N  e.  ZZ  /\  -u D  e.  NN )  ->  E. r  e.  ZZ  E. k  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )
111, 9, 10syl2anc 406 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  E. r  e.  ZZ  E. k  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )
12 simplr 500 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
k  e.  ZZ )
1312znegcld 9027 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  -u k  e.  ZZ )
14 simpr1 955 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
0  <_  r )
15 simpr2 956 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
r  <  ( abs `  -u D ) )
16 simpll2 989 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  ->  D  e.  ZZ )
1716ad2antrr 475 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  D  e.  ZZ )
1817zcnd 9026 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  D  e.  CC )
1918absnegd 10801 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( abs `  -u D
)  =  ( abs `  D ) )
2015, 19breqtrd 3899 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
r  <  ( abs `  D ) )
21 simpr3 957 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  N  =  ( (
k  x.  -u D
)  +  r ) )
2212zcnd 9026 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
k  e.  CC )
23 mulneg12 8026 . . . . . . . . . 10  |-  ( ( k  e.  CC  /\  D  e.  CC )  ->  ( -u k  x.  D )  =  ( k  x.  -u D
) )
2422, 18, 23syl2anc 406 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( -u k  x.  D
)  =  ( k  x.  -u D ) )
2524oveq1d 5721 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  -> 
( ( -u k  x.  D )  +  r )  =  ( ( k  x.  -u D
)  +  r ) )
2621, 25eqtr4d 2135 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  N  =  ( ( -u k  x.  D )  +  r ) )
27 oveq1 5713 . . . . . . . . . . 11  |-  ( q  =  -u k  ->  (
q  x.  D )  =  ( -u k  x.  D ) )
2827oveq1d 5721 . . . . . . . . . 10  |-  ( q  =  -u k  ->  (
( q  x.  D
)  +  r )  =  ( ( -u k  x.  D )  +  r ) )
2928eqeq2d 2111 . . . . . . . . 9  |-  ( q  =  -u k  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( -u k  x.  D )  +  r ) ) )
30293anbi3d 1264 . . . . . . . 8  |-  ( q  =  -u k  ->  (
( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( -u k  x.  D )  +  r ) ) ) )
3130rspcev 2744 . . . . . . 7  |-  ( (
-u k  e.  ZZ  /\  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( -u k  x.  D )  +  r ) ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
3213, 14, 20, 26, 31syl13anc 1186 . . . . . 6  |-  ( ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  /\  (
0  <_  r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) ) )  ->  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
3332ex 114 . . . . 5  |-  ( ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  /\  k  e.  ZZ )  ->  (
( 0  <_  r  /\  r  <  ( abs `  -u D )  /\  N  =  ( (
k  x.  -u D
)  +  r ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3433rexlimdva 2508 . . . 4  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  /\  r  e.  ZZ )  ->  ( E. k  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  -u D )  /\  N  =  ( (
k  x.  -u D
)  +  r ) )  ->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3534reximdva 2493 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  -> 
( E. r  e.  ZZ  E. k  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  -u D
)  /\  N  =  ( ( k  x.  -u D )  +  r ) )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
3611, 35mpd 13 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  <  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
37 simpr 109 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  D  =  0 )
38 simpl3 954 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  D  =/=  0
)
3937, 38pm2.21ddne 2350 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  D  =  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
40 simpl1 952 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  N  e.  ZZ )
41 simpl2 953 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  D  e.  ZZ )
42 simpr 109 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  -> 
0  <  D )
43 elnnz 8916 . . . 4  |-  ( D  e.  NN  <->  ( D  e.  ZZ  /\  0  < 
D ) )
4441, 42, 43sylanbrc 411 . . 3  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  D  e.  NN )
45 divalglemnn 11410 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
4640, 44, 45syl2anc 406 . 2  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  /\  0  <  D )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
47 ztri3or0 8948 . . 3  |-  ( D  e.  ZZ  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
48473ad2ant2 971 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( D  <  0  \/  D  =  0  \/  0  <  D ) )
4936, 39, 46, 48mpjao3dan 1253 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  E. r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 929    /\ w3a 930    = wceq 1299    e. wcel 1448    =/= wne 2267   E.wrex 2376   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   CCcc 7498   0cc0 7500    + caddc 7503    x. cmul 7505    < clt 7672    <_ cle 7673   -ucneg 7805   NNcn 8578   ZZcz 8906   abscabs 10609
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fl 9884  df-mod 9937  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611
This theorem is referenced by:  divalglemeuneg  11415
  Copyright terms: Public domain W3C validator