ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p2e5 Unicode version

Theorem 3p2e5 9019
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p2e5  |-  ( 3  +  2 )  =  5

Proof of Theorem 3p2e5
StepHypRef Expression
1 df-2 8937 . . . . 5  |-  2  =  ( 1  +  1 )
21oveq2i 5864 . . . 4  |-  ( 3  +  2 )  =  ( 3  +  ( 1  +  1 ) )
3 3cn 8953 . . . . 5  |-  3  e.  CC
4 ax-1cn 7867 . . . . 5  |-  1  e.  CC
53, 4, 4addassi 7928 . . . 4  |-  ( ( 3  +  1 )  +  1 )  =  ( 3  +  ( 1  +  1 ) )
62, 5eqtr4i 2194 . . 3  |-  ( 3  +  2 )  =  ( ( 3  +  1 )  +  1 )
7 df-4 8939 . . . 4  |-  4  =  ( 3  +  1 )
87oveq1i 5863 . . 3  |-  ( 4  +  1 )  =  ( ( 3  +  1 )  +  1 )
96, 8eqtr4i 2194 . 2  |-  ( 3  +  2 )  =  ( 4  +  1 )
10 df-5 8940 . 2  |-  5  =  ( 4  +  1 )
119, 10eqtr4i 2194 1  |-  ( 3  +  2 )  =  5
Colors of variables: wff set class
Syntax hints:    = wceq 1348  (class class class)co 5853   1c1 7775    + caddc 7777   2c2 8929   3c3 8930   4c4 8931   5c5 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-addrcl 7871  ax-addass 7876
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-2 8937  df-3 8938  df-4 8939  df-5 8940
This theorem is referenced by:  3p3e6  9020
  Copyright terms: Public domain W3C validator