ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p2e5 Unicode version

Theorem 3p2e5 8527
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p2e5  |-  ( 3  +  2 )  =  5

Proof of Theorem 3p2e5
StepHypRef Expression
1 df-2 8452 . . . . 5  |-  2  =  ( 1  +  1 )
21oveq2i 5645 . . . 4  |-  ( 3  +  2 )  =  ( 3  +  ( 1  +  1 ) )
3 3cn 8468 . . . . 5  |-  3  e.  CC
4 ax-1cn 7417 . . . . 5  |-  1  e.  CC
53, 4, 4addassi 7475 . . . 4  |-  ( ( 3  +  1 )  +  1 )  =  ( 3  +  ( 1  +  1 ) )
62, 5eqtr4i 2111 . . 3  |-  ( 3  +  2 )  =  ( ( 3  +  1 )  +  1 )
7 df-4 8454 . . . 4  |-  4  =  ( 3  +  1 )
87oveq1i 5644 . . 3  |-  ( 4  +  1 )  =  ( ( 3  +  1 )  +  1 )
96, 8eqtr4i 2111 . 2  |-  ( 3  +  2 )  =  ( 4  +  1 )
10 df-5 8455 . 2  |-  5  =  ( 4  +  1 )
119, 10eqtr4i 2111 1  |-  ( 3  +  2 )  =  5
Colors of variables: wff set class
Syntax hints:    = wceq 1289  (class class class)co 5634   1c1 7330    + caddc 7332   2c2 8444   3c3 8445   4c4 8446   5c5 8447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-addrcl 7421  ax-addass 7426
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637  df-2 8452  df-3 8453  df-4 8454  df-5 8455
This theorem is referenced by:  3p3e6  8528
  Copyright terms: Public domain W3C validator