ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p3e6 Unicode version

Theorem 3p3e6 9150
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6  |-  ( 3  +  3 )  =  6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 9067 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5936 . . 3  |-  ( 3  +  3 )  =  ( 3  +  ( 2  +  1 ) )
3 3cn 9082 . . . 4  |-  3  e.  CC
4 2cn 9078 . . . 4  |-  2  e.  CC
5 ax-1cn 7989 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8051 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 3  +  ( 2  +  1 ) )
72, 6eqtr4i 2220 . 2  |-  ( 3  +  3 )  =  ( ( 3  +  2 )  +  1 )
8 df-6 9070 . . 3  |-  6  =  ( 5  +  1 )
9 3p2e5 9149 . . . 4  |-  ( 3  +  2 )  =  5
109oveq1i 5935 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 5  +  1 )
118, 10eqtr4i 2220 . 2  |-  6  =  ( ( 3  +  2 )  +  1 )
127, 11eqtr4i 2220 1  |-  ( 3  +  3 )  =  6
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5925   1c1 7897    + caddc 7899   2c2 9058   3c3 9059   5c5 9061   6c6 9062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-addrcl 7993  ax-addass 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070
This theorem is referenced by:  3t2e6  9164  binom4  15299  ex-dvds  15460  ex-gcd  15461
  Copyright terms: Public domain W3C validator