| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3p3e6 | Unicode version | ||
| Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) | 
| Ref | Expression | 
|---|---|
| 3p3e6 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3 9050 | 
. . . 4
 | |
| 2 | 1 | oveq2i 5933 | 
. . 3
 | 
| 3 | 3cn 9065 | 
. . . 4
 | |
| 4 | 2cn 9061 | 
. . . 4
 | |
| 5 | ax-1cn 7972 | 
. . . 4
 | |
| 6 | 3, 4, 5 | addassi 8034 | 
. . 3
 | 
| 7 | 2, 6 | eqtr4i 2220 | 
. 2
 | 
| 8 | df-6 9053 | 
. . 3
 | |
| 9 | 3p2e5 9132 | 
. . . 4
 | |
| 10 | 9 | oveq1i 5932 | 
. . 3
 | 
| 11 | 8, 10 | eqtr4i 2220 | 
. 2
 | 
| 12 | 7, 11 | eqtr4i 2220 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-addrcl 7976 ax-addass 7981 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 | 
| This theorem is referenced by: 3t2e6 9147 binom4 15215 ex-dvds 15376 ex-gcd 15377 | 
| Copyright terms: Public domain | W3C validator |