ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p3e6 Unicode version

Theorem 3p3e6 8999
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6  |-  ( 3  +  3 )  =  6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 8917 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5853 . . 3  |-  ( 3  +  3 )  =  ( 3  +  ( 2  +  1 ) )
3 3cn 8932 . . . 4  |-  3  e.  CC
4 2cn 8928 . . . 4  |-  2  e.  CC
5 ax-1cn 7846 . . . 4  |-  1  e.  CC
63, 4, 5addassi 7907 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 3  +  ( 2  +  1 ) )
72, 6eqtr4i 2189 . 2  |-  ( 3  +  3 )  =  ( ( 3  +  2 )  +  1 )
8 df-6 8920 . . 3  |-  6  =  ( 5  +  1 )
9 3p2e5 8998 . . . 4  |-  ( 3  +  2 )  =  5
109oveq1i 5852 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 5  +  1 )
118, 10eqtr4i 2189 . 2  |-  6  =  ( ( 3  +  2 )  +  1 )
127, 11eqtr4i 2189 1  |-  ( 3  +  3 )  =  6
Colors of variables: wff set class
Syntax hints:    = wceq 1343  (class class class)co 5842   1c1 7754    + caddc 7756   2c2 8908   3c3 8909   5c5 8911   6c6 8912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-addrcl 7850  ax-addass 7855
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920
This theorem is referenced by:  3t2e6  9013  binom4  13537  ex-dvds  13611  ex-gcd  13612
  Copyright terms: Public domain W3C validator