ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p3e6 Unicode version

Theorem 3p3e6 9133
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6  |-  ( 3  +  3 )  =  6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 9050 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5933 . . 3  |-  ( 3  +  3 )  =  ( 3  +  ( 2  +  1 ) )
3 3cn 9065 . . . 4  |-  3  e.  CC
4 2cn 9061 . . . 4  |-  2  e.  CC
5 ax-1cn 7972 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8034 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 3  +  ( 2  +  1 ) )
72, 6eqtr4i 2220 . 2  |-  ( 3  +  3 )  =  ( ( 3  +  2 )  +  1 )
8 df-6 9053 . . 3  |-  6  =  ( 5  +  1 )
9 3p2e5 9132 . . . 4  |-  ( 3  +  2 )  =  5
109oveq1i 5932 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 5  +  1 )
118, 10eqtr4i 2220 . 2  |-  6  =  ( ( 3  +  2 )  +  1 )
127, 11eqtr4i 2220 1  |-  ( 3  +  3 )  =  6
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5922   1c1 7880    + caddc 7882   2c2 9041   3c3 9042   5c5 9044   6c6 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-addrcl 7976  ax-addass 7981
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053
This theorem is referenced by:  3t2e6  9147  binom4  15215  ex-dvds  15376  ex-gcd  15377
  Copyright terms: Public domain W3C validator