ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p3e6 Unicode version

Theorem 3p3e6 9127
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p3e6  |-  ( 3  +  3 )  =  6

Proof of Theorem 3p3e6
StepHypRef Expression
1 df-3 9044 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5930 . . 3  |-  ( 3  +  3 )  =  ( 3  +  ( 2  +  1 ) )
3 3cn 9059 . . . 4  |-  3  e.  CC
4 2cn 9055 . . . 4  |-  2  e.  CC
5 ax-1cn 7967 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8029 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 3  +  ( 2  +  1 ) )
72, 6eqtr4i 2217 . 2  |-  ( 3  +  3 )  =  ( ( 3  +  2 )  +  1 )
8 df-6 9047 . . 3  |-  6  =  ( 5  +  1 )
9 3p2e5 9126 . . . 4  |-  ( 3  +  2 )  =  5
109oveq1i 5929 . . 3  |-  ( ( 3  +  2 )  +  1 )  =  ( 5  +  1 )
118, 10eqtr4i 2217 . 2  |-  6  =  ( ( 3  +  2 )  +  1 )
127, 11eqtr4i 2217 1  |-  ( 3  +  3 )  =  6
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5919   1c1 7875    + caddc 7877   2c2 9035   3c3 9036   5c5 9038   6c6 9039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-addrcl 7971  ax-addass 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047
This theorem is referenced by:  3t2e6  9141  binom4  15152  ex-dvds  15292  ex-gcd  15293
  Copyright terms: Public domain W3C validator