| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3cn | Unicode version | ||
| Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
| Ref | Expression |
|---|---|
| 3cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9064 |
. 2
| |
| 2 | 1 | recni 8038 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9049 df-3 9050 |
| This theorem is referenced by: 3ex 9066 3m1e2 9110 4m1e3 9111 3p2e5 9132 3p3e6 9133 4p4e8 9136 5p4e9 9139 3t1e3 9146 3t2e6 9147 3t3e9 9148 8th4div3 9210 halfpm6th 9211 6p4e10 9528 9t8e72 9584 halfthird 9599 fzo0to42pr 10296 sq3 10728 expnass 10737 fac3 10824 4bc3eq4 10865 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 cos1bnd 11924 cos2bnd 11925 cos01gt0 11928 3dvdsdec 12030 3dvds2dec 12031 5ndvds3 12099 3lcm2e6woprm 12254 2exp6 12602 2exp16 12606 cosq23lt0 15069 tangtx 15074 sincos6thpi 15078 sincos3rdpi 15079 pigt3 15080 binom4 15215 lgsdir2lem1 15269 lgsdir2lem5 15273 2lgslem3b 15335 2lgslem3d 15337 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 ex-exp 15373 ex-dvds 15376 ex-gcd 15377 |
| Copyright terms: Public domain | W3C validator |