![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3cn | Unicode version |
Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
Ref | Expression |
---|---|
3cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 8697 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | recni 7695 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-11 1465 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-resscn 7630 ax-1re 7632 ax-addrcl 7635 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-in 3041 df-ss 3048 df-2 8682 df-3 8683 |
This theorem is referenced by: 3ex 8699 3m1e2 8743 3p2e5 8758 3p3e6 8759 4p4e8 8762 5p4e9 8765 3t1e3 8772 3t2e6 8773 3t3e9 8774 8th4div3 8836 halfpm6th 8837 6p4e10 9150 9t8e72 9206 fzo0to42pr 9883 sq3 10275 expnass 10284 fac3 10364 4bc3eq4 10405 ef01bndlem 11307 sin01bnd 11308 cos01bnd 11309 cos1bnd 11310 cos2bnd 11311 cos01gt0 11313 3dvdsdec 11403 3dvds2dec 11404 3lcm2e6woprm 11606 ex-exp 12619 ex-dvds 12622 ex-gcd 12623 |
Copyright terms: Public domain | W3C validator |