ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4d Unicode version

Theorem 3sstr4d 3238
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4d.1  |-  ( ph  ->  A  C_  B )
3sstr4d.2  |-  ( ph  ->  C  =  A )
3sstr4d.3  |-  ( ph  ->  D  =  B )
Assertion
Ref Expression
3sstr4d  |-  ( ph  ->  C  C_  D )

Proof of Theorem 3sstr4d
StepHypRef Expression
1 3sstr4d.1 . 2  |-  ( ph  ->  A  C_  B )
2 3sstr4d.2 . . 3  |-  ( ph  ->  C  =  A )
3 3sstr4d.3 . . 3  |-  ( ph  ->  D  =  B )
42, 3sseq12d 3224 . 2  |-  ( ph  ->  ( C  C_  D  <->  A 
C_  B ) )
51, 4mpbird 167 1  |-  ( ph  ->  C  C_  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  rdgss  6469  sucinc2  6532  oawordi  6555  nnnninf  7228  fzoss1  10295  fzoss2  10296  swrd0g  11113  lspss  14161  clsss  14590  ntrss  14591  sslm  14719  txss12  14738  metss2lem  14969  xmettxlem  14981  xmettx  14982  plyss  15210  nnsf  15942  nninfself  15950
  Copyright terms: Public domain W3C validator