| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4d.1 |
|
| 3sstr4d.2 |
|
| 3sstr4d.3 |
|
| Ref | Expression |
|---|---|
| 3sstr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4d.1 |
. 2
| |
| 2 | 3sstr4d.2 |
. . 3
| |
| 3 | 3sstr4d.3 |
. . 3
| |
| 4 | 2, 3 | sseq12d 3224 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: rdgss 6469 sucinc2 6532 oawordi 6555 nnnninf 7228 fzoss1 10295 fzoss2 10296 swrd0g 11113 lspss 14161 clsss 14590 ntrss 14591 sslm 14719 txss12 14738 metss2lem 14969 xmettxlem 14981 xmettx 14982 plyss 15210 nnsf 15942 nninfself 15950 |
| Copyright terms: Public domain | W3C validator |