| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4d.1 |
|
| 3sstr4d.2 |
|
| 3sstr4d.3 |
|
| Ref | Expression |
|---|---|
| 3sstr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4d.1 |
. 2
| |
| 2 | 3sstr4d.2 |
. . 3
| |
| 3 | 3sstr4d.3 |
. . 3
| |
| 4 | 2, 3 | sseq12d 3214 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: rdgss 6441 sucinc2 6504 oawordi 6527 nnnninf 7192 fzoss1 10247 fzoss2 10248 lspss 13955 clsss 14354 ntrss 14355 sslm 14483 txss12 14502 metss2lem 14733 xmettxlem 14745 xmettx 14746 plyss 14974 nnsf 15649 nninfself 15657 |
| Copyright terms: Public domain | W3C validator |