| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4d.1 |
|
| 3sstr4d.2 |
|
| 3sstr4d.3 |
|
| Ref | Expression |
|---|---|
| 3sstr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4d.1 |
. 2
| |
| 2 | 3sstr4d.2 |
. . 3
| |
| 3 | 3sstr4d.3 |
. . 3
| |
| 4 | 2, 3 | sseq12d 3232 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: rdgss 6492 sucinc2 6555 oawordi 6578 nnnninf 7254 fzoss1 10330 fzoss2 10331 swrd0g 11151 lspss 14276 clsss 14705 ntrss 14706 sslm 14834 txss12 14853 metss2lem 15084 xmettxlem 15096 xmettx 15097 plyss 15325 nnsf 16144 nninfself 16152 |
| Copyright terms: Public domain | W3C validator |