ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem Unicode version

Theorem xmettxlem 14688
Description: Lemma for xmettx 14689. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmettx.j  |-  J  =  ( MetOpen `  M )
xmettx.k  |-  K  =  ( MetOpen `  N )
xmettx.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
xmettxlem  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    J( v, u)    K( v, u)    L( v, u)

Proof of Theorem xmettxlem
Dummy variables  p  r  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 14686 . . . . . . . 8  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 blrn 14591 . . . . . . . 8  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  (
w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) ) )
64, 5syl 14 . . . . . . 7  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p ) ) )
76biimpa 296 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) )
8 xmettx.j . . . . . . . . . . . . . . 15  |-  J  =  ( MetOpen `  M )
98mopntop 14623 . . . . . . . . . . . . . 14  |-  ( M  e.  ( *Met `  X )  ->  J  e.  Top )
102, 9syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
11 xmettx.k . . . . . . . . . . . . . . 15  |-  K  =  ( MetOpen `  N )
1211mopntop 14623 . . . . . . . . . . . . . 14  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  Top )
133, 12syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Top )
14 mpoexga 6267 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1510, 13, 14syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
16 rnexg 4928 . . . . . . . . . . . 12  |-  ( ( r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1715, 16syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V )
1817ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
19 bastg 14240 . . . . . . . . . 10  |-  ( ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
2018, 19syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
212ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  M  e.  ( *Met `  X ) )
22 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
z  e.  ( X  X.  Y ) )
23 xp1st 6220 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
2422, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 1st `  z
)  e.  X )
25 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  p  e.  RR* )
268blopn 14669 . . . . . . . . . . . 12  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  z
)  e.  X  /\  p  e.  RR* )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
2721, 24, 25, 26syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
283ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  N  e.  ( *Met `  Y ) )
29 xp2nd 6221 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
3022, 29syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 2nd `  z
)  e.  Y )
3111blopn 14669 . . . . . . . . . . . 12  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  z
)  e.  Y  /\  p  e.  RR* )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
3228, 30, 25, 31syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
33 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( z
( ball `  P )
p ) )
341, 21, 28, 25, 22xmetxpbl 14687 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( z ( ball `  P ) p )  =  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3533, 34eqtrd 2226 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( (
( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
36 xpeq1 4674 . . . . . . . . . . . . 13  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( r  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  s ) )
3736eqeq2d 2205 . . . . . . . . . . . 12  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( w  =  ( r  X.  s
)  <->  w  =  (
( ( 1st `  z
) ( ball `  M
) p )  X.  s ) ) )
38 xpeq2 4675 . . . . . . . . . . . . 13  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3938eqeq2d 2205 . . . . . . . . . . . 12  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  s )  <->  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) ) )
4037, 39rspc2ev 2880 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  z
) ( ball `  M
) p )  e.  J  /\  ( ( 2nd `  z ) ( ball `  N
) p )  e.  K  /\  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s
) )
4127, 32, 35, 40syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
42 eqid 2193 . . . . . . . . . . . 12  |-  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  =  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )
4342elrnmpog 6032 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
w  e.  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) ) )
4443elv 2764 . . . . . . . . . 10  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
4541, 44sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )
4620, 45sseldd 3181 . . . . . . . 8  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
4746ex 115 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ran  ( ball `  P
) )  /\  (
z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  ->  ( w  =  ( z ( ball `  P ) p )  ->  w  e.  (
topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
4847rexlimdvva 2619 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  ( E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
497, 48mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
5049ex 115 . . . 4  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5150ssrdv 3186 . . 3  |-  ( ph  ->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
52 blex 14566 . . . . 5  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P )  e. 
_V )
53 rnexg 4928 . . . . 5  |-  ( (
ball `  P )  e.  _V  ->  ran  ( ball `  P )  e.  _V )
544, 52, 533syl 17 . . . 4  |-  ( ph  ->  ran  ( ball `  P
)  e.  _V )
55 tgss3 14257 . . . 4  |-  ( ( ran  ( ball `  P
)  e.  _V  /\  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )  ->  ( ( topGen ` 
ran  ( ball `  P
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5654, 17, 55syl2anc 411 . . 3  |-  ( ph  ->  ( ( topGen `  ran  ( ball `  P )
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5751, 56mpbird 167 . 2  |-  ( ph  ->  ( topGen `  ran  ( ball `  P ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
58 xmettx.l . . . 4  |-  L  =  ( MetOpen `  P )
5958mopnval 14621 . . 3  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  L  =  ( topGen `  ran  ( ball `  P )
) )
604, 59syl 14 . 2  |-  ( ph  ->  L  =  ( topGen ` 
ran  ( ball `  P
) ) )
61 eqid 2193 . . . 4  |-  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  =  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )
6261txval 14434 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6310, 13, 62syl2anc 411 . 2  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6457, 60, 633sstr4d 3225 1  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   _Vcvv 2760    C_ wss 3154   {cpr 3620    X. cxp 4658   ran crn 4661   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   1stc1st 6193   2ndc2nd 6194   supcsup 7043   RR*cxr 8055    < clt 8056   topGenctg 12868   *Metcxmet 14035   ballcbl 14037   MetOpencmopn 14040   Topctop 14176    tX ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-tx 14432
This theorem is referenced by:  xmettx  14689
  Copyright terms: Public domain W3C validator