ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem Unicode version

Theorem xmettxlem 15014
Description: Lemma for xmettx 15015. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmettx.j  |-  J  =  ( MetOpen `  M )
xmettx.k  |-  K  =  ( MetOpen `  N )
xmettx.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
xmettxlem  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    J( v, u)    K( v, u)    L( v, u)

Proof of Theorem xmettxlem
Dummy variables  p  r  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 15012 . . . . . . . 8  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 blrn 14917 . . . . . . . 8  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  (
w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) ) )
64, 5syl 14 . . . . . . 7  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p ) ) )
76biimpa 296 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) )
8 xmettx.j . . . . . . . . . . . . . . 15  |-  J  =  ( MetOpen `  M )
98mopntop 14949 . . . . . . . . . . . . . 14  |-  ( M  e.  ( *Met `  X )  ->  J  e.  Top )
102, 9syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
11 xmettx.k . . . . . . . . . . . . . . 15  |-  K  =  ( MetOpen `  N )
1211mopntop 14949 . . . . . . . . . . . . . 14  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  Top )
133, 12syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Top )
14 mpoexga 6300 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1510, 13, 14syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
16 rnexg 4944 . . . . . . . . . . . 12  |-  ( ( r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1715, 16syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V )
1817ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
19 bastg 14566 . . . . . . . . . 10  |-  ( ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
2018, 19syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
212ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  M  e.  ( *Met `  X ) )
22 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
z  e.  ( X  X.  Y ) )
23 xp1st 6253 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
2422, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 1st `  z
)  e.  X )
25 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  p  e.  RR* )
268blopn 14995 . . . . . . . . . . . 12  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  z
)  e.  X  /\  p  e.  RR* )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
2721, 24, 25, 26syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
283ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  N  e.  ( *Met `  Y ) )
29 xp2nd 6254 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
3022, 29syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 2nd `  z
)  e.  Y )
3111blopn 14995 . . . . . . . . . . . 12  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  z
)  e.  Y  /\  p  e.  RR* )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
3228, 30, 25, 31syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
33 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( z
( ball `  P )
p ) )
341, 21, 28, 25, 22xmetxpbl 15013 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( z ( ball `  P ) p )  =  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3533, 34eqtrd 2238 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( (
( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
36 xpeq1 4690 . . . . . . . . . . . . 13  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( r  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  s ) )
3736eqeq2d 2217 . . . . . . . . . . . 12  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( w  =  ( r  X.  s
)  <->  w  =  (
( ( 1st `  z
) ( ball `  M
) p )  X.  s ) ) )
38 xpeq2 4691 . . . . . . . . . . . . 13  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3938eqeq2d 2217 . . . . . . . . . . . 12  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  s )  <->  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) ) )
4037, 39rspc2ev 2892 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  z
) ( ball `  M
) p )  e.  J  /\  ( ( 2nd `  z ) ( ball `  N
) p )  e.  K  /\  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s
) )
4127, 32, 35, 40syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
42 eqid 2205 . . . . . . . . . . . 12  |-  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  =  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )
4342elrnmpog 6060 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
w  e.  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) ) )
4443elv 2776 . . . . . . . . . 10  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
4541, 44sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )
4620, 45sseldd 3194 . . . . . . . 8  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
4746ex 115 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ran  ( ball `  P
) )  /\  (
z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  ->  ( w  =  ( z ( ball `  P ) p )  ->  w  e.  (
topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
4847rexlimdvva 2631 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  ( E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
497, 48mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
5049ex 115 . . . 4  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5150ssrdv 3199 . . 3  |-  ( ph  ->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
52 blex 14892 . . . . 5  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P )  e. 
_V )
53 rnexg 4944 . . . . 5  |-  ( (
ball `  P )  e.  _V  ->  ran  ( ball `  P )  e.  _V )
544, 52, 533syl 17 . . . 4  |-  ( ph  ->  ran  ( ball `  P
)  e.  _V )
55 tgss3 14583 . . . 4  |-  ( ( ran  ( ball `  P
)  e.  _V  /\  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )  ->  ( ( topGen ` 
ran  ( ball `  P
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5654, 17, 55syl2anc 411 . . 3  |-  ( ph  ->  ( ( topGen `  ran  ( ball `  P )
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5751, 56mpbird 167 . 2  |-  ( ph  ->  ( topGen `  ran  ( ball `  P ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
58 xmettx.l . . . 4  |-  L  =  ( MetOpen `  P )
5958mopnval 14947 . . 3  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  L  =  ( topGen `  ran  ( ball `  P )
) )
604, 59syl 14 . 2  |-  ( ph  ->  L  =  ( topGen ` 
ran  ( ball `  P
) ) )
61 eqid 2205 . . . 4  |-  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  =  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )
6261txval 14760 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6310, 13, 62syl2anc 411 . 2  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6457, 60, 633sstr4d 3238 1  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   _Vcvv 2772    C_ wss 3166   {cpr 3634    X. cxp 4674   ran crn 4677   ` cfv 5272  (class class class)co 5946    e. cmpo 5948   1stc1st 6226   2ndc2nd 6227   supcsup 7086   RR*cxr 8108    < clt 8109   topGenctg 13119   *Metcxmet 14331   ballcbl 14333   MetOpencmopn 14336   Topctop 14502    tX ctx 14757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-tx 14758
This theorem is referenced by:  xmettx  15015
  Copyright terms: Public domain W3C validator