ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem Unicode version

Theorem xmettxlem 15183
Description: Lemma for xmettx 15184. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmettx.j  |-  J  =  ( MetOpen `  M )
xmettx.k  |-  K  =  ( MetOpen `  N )
xmettx.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
xmettxlem  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    J( v, u)    K( v, u)    L( v, u)

Proof of Theorem xmettxlem
Dummy variables  p  r  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 15181 . . . . . . . 8  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 blrn 15086 . . . . . . . 8  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  (
w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) ) )
64, 5syl 14 . . . . . . 7  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p ) ) )
76biimpa 296 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) )
8 xmettx.j . . . . . . . . . . . . . . 15  |-  J  =  ( MetOpen `  M )
98mopntop 15118 . . . . . . . . . . . . . 14  |-  ( M  e.  ( *Met `  X )  ->  J  e.  Top )
102, 9syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
11 xmettx.k . . . . . . . . . . . . . . 15  |-  K  =  ( MetOpen `  N )
1211mopntop 15118 . . . . . . . . . . . . . 14  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  Top )
133, 12syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Top )
14 mpoexga 6358 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1510, 13, 14syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
16 rnexg 4989 . . . . . . . . . . . 12  |-  ( ( r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1715, 16syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V )
1817ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
19 bastg 14735 . . . . . . . . . 10  |-  ( ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
2018, 19syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
212ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  M  e.  ( *Met `  X ) )
22 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
z  e.  ( X  X.  Y ) )
23 xp1st 6311 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
2422, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 1st `  z
)  e.  X )
25 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  p  e.  RR* )
268blopn 15164 . . . . . . . . . . . 12  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  z
)  e.  X  /\  p  e.  RR* )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
2721, 24, 25, 26syl3anc 1271 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
283ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  N  e.  ( *Met `  Y ) )
29 xp2nd 6312 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
3022, 29syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 2nd `  z
)  e.  Y )
3111blopn 15164 . . . . . . . . . . . 12  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  z
)  e.  Y  /\  p  e.  RR* )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
3228, 30, 25, 31syl3anc 1271 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
33 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( z
( ball `  P )
p ) )
341, 21, 28, 25, 22xmetxpbl 15182 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( z ( ball `  P ) p )  =  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3533, 34eqtrd 2262 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( (
( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
36 xpeq1 4733 . . . . . . . . . . . . 13  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( r  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  s ) )
3736eqeq2d 2241 . . . . . . . . . . . 12  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( w  =  ( r  X.  s
)  <->  w  =  (
( ( 1st `  z
) ( ball `  M
) p )  X.  s ) ) )
38 xpeq2 4734 . . . . . . . . . . . . 13  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3938eqeq2d 2241 . . . . . . . . . . . 12  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  s )  <->  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) ) )
4037, 39rspc2ev 2922 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  z
) ( ball `  M
) p )  e.  J  /\  ( ( 2nd `  z ) ( ball `  N
) p )  e.  K  /\  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s
) )
4127, 32, 35, 40syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
42 eqid 2229 . . . . . . . . . . . 12  |-  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  =  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )
4342elrnmpog 6117 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
w  e.  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) ) )
4443elv 2803 . . . . . . . . . 10  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
4541, 44sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )
4620, 45sseldd 3225 . . . . . . . 8  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
4746ex 115 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ran  ( ball `  P
) )  /\  (
z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  ->  ( w  =  ( z ( ball `  P ) p )  ->  w  e.  (
topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
4847rexlimdvva 2656 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  ( E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
497, 48mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
5049ex 115 . . . 4  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5150ssrdv 3230 . . 3  |-  ( ph  ->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
52 blex 15061 . . . . 5  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P )  e. 
_V )
53 rnexg 4989 . . . . 5  |-  ( (
ball `  P )  e.  _V  ->  ran  ( ball `  P )  e.  _V )
544, 52, 533syl 17 . . . 4  |-  ( ph  ->  ran  ( ball `  P
)  e.  _V )
55 tgss3 14752 . . . 4  |-  ( ( ran  ( ball `  P
)  e.  _V  /\  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )  ->  ( ( topGen ` 
ran  ( ball `  P
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5654, 17, 55syl2anc 411 . . 3  |-  ( ph  ->  ( ( topGen `  ran  ( ball `  P )
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5751, 56mpbird 167 . 2  |-  ( ph  ->  ( topGen `  ran  ( ball `  P ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
58 xmettx.l . . . 4  |-  L  =  ( MetOpen `  P )
5958mopnval 15116 . . 3  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  L  =  ( topGen `  ran  ( ball `  P )
) )
604, 59syl 14 . 2  |-  ( ph  ->  L  =  ( topGen ` 
ran  ( ball `  P
) ) )
61 eqid 2229 . . . 4  |-  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  =  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )
6261txval 14929 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6310, 13, 62syl2anc 411 . 2  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6457, 60, 633sstr4d 3269 1  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799    C_ wss 3197   {cpr 3667    X. cxp 4717   ran crn 4720   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   1stc1st 6284   2ndc2nd 6285   supcsup 7149   RR*cxr 8180    < clt 8181   topGenctg 13287   *Metcxmet 14500   ballcbl 14502   MetOpencmopn 14505   Topctop 14671    tX ctx 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-tx 14927
This theorem is referenced by:  xmettx  15184
  Copyright terms: Public domain W3C validator