ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem Unicode version

Theorem xmettxlem 13149
Description: Lemma for xmettx 13150. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmettx.j  |-  J  =  ( MetOpen `  M )
xmettx.k  |-  K  =  ( MetOpen `  N )
xmettx.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
xmettxlem  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    J( v, u)    K( v, u)    L( v, u)

Proof of Theorem xmettxlem
Dummy variables  p  r  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 13147 . . . . . . . 8  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 blrn 13052 . . . . . . . 8  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  (
w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) ) )
64, 5syl 14 . . . . . . 7  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p ) ) )
76biimpa 294 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) )
8 xmettx.j . . . . . . . . . . . . . . 15  |-  J  =  ( MetOpen `  M )
98mopntop 13084 . . . . . . . . . . . . . 14  |-  ( M  e.  ( *Met `  X )  ->  J  e.  Top )
102, 9syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
11 xmettx.k . . . . . . . . . . . . . . 15  |-  K  =  ( MetOpen `  N )
1211mopntop 13084 . . . . . . . . . . . . . 14  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  Top )
133, 12syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Top )
14 mpoexga 6180 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1510, 13, 14syl2anc 409 . . . . . . . . . . . 12  |-  ( ph  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
16 rnexg 4869 . . . . . . . . . . . 12  |-  ( ( r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1715, 16syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V )
1817ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
19 bastg 12701 . . . . . . . . . 10  |-  ( ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
2018, 19syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
212ad3antrrr 484 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  M  e.  ( *Met `  X ) )
22 simplrl 525 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
z  e.  ( X  X.  Y ) )
23 xp1st 6133 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
2422, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 1st `  z
)  e.  X )
25 simplrr 526 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  p  e.  RR* )
268blopn 13130 . . . . . . . . . . . 12  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  z
)  e.  X  /\  p  e.  RR* )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
2721, 24, 25, 26syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
283ad3antrrr 484 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  N  e.  ( *Met `  Y ) )
29 xp2nd 6134 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
3022, 29syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 2nd `  z
)  e.  Y )
3111blopn 13130 . . . . . . . . . . . 12  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  z
)  e.  Y  /\  p  e.  RR* )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
3228, 30, 25, 31syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
33 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( z
( ball `  P )
p ) )
341, 21, 28, 25, 22xmetxpbl 13148 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( z ( ball `  P ) p )  =  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3533, 34eqtrd 2198 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( (
( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
36 xpeq1 4618 . . . . . . . . . . . . 13  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( r  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  s ) )
3736eqeq2d 2177 . . . . . . . . . . . 12  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( w  =  ( r  X.  s
)  <->  w  =  (
( ( 1st `  z
) ( ball `  M
) p )  X.  s ) ) )
38 xpeq2 4619 . . . . . . . . . . . . 13  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3938eqeq2d 2177 . . . . . . . . . . . 12  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  s )  <->  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) ) )
4037, 39rspc2ev 2845 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  z
) ( ball `  M
) p )  e.  J  /\  ( ( 2nd `  z ) ( ball `  N
) p )  e.  K  /\  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s
) )
4127, 32, 35, 40syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
42 eqid 2165 . . . . . . . . . . . 12  |-  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  =  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )
4342elrnmpog 5954 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
w  e.  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) ) )
4443elv 2730 . . . . . . . . . 10  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
4541, 44sylibr 133 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )
4620, 45sseldd 3143 . . . . . . . 8  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
4746ex 114 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ran  ( ball `  P
) )  /\  (
z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  ->  ( w  =  ( z ( ball `  P ) p )  ->  w  e.  (
topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
4847rexlimdvva 2591 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  ( E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
497, 48mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
5049ex 114 . . . 4  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5150ssrdv 3148 . . 3  |-  ( ph  ->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
52 blex 13027 . . . . 5  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P )  e. 
_V )
53 rnexg 4869 . . . . 5  |-  ( (
ball `  P )  e.  _V  ->  ran  ( ball `  P )  e.  _V )
544, 52, 533syl 17 . . . 4  |-  ( ph  ->  ran  ( ball `  P
)  e.  _V )
55 tgss3 12718 . . . 4  |-  ( ( ran  ( ball `  P
)  e.  _V  /\  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )  ->  ( ( topGen ` 
ran  ( ball `  P
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5654, 17, 55syl2anc 409 . . 3  |-  ( ph  ->  ( ( topGen `  ran  ( ball `  P )
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5751, 56mpbird 166 . 2  |-  ( ph  ->  ( topGen `  ran  ( ball `  P ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
58 xmettx.l . . . 4  |-  L  =  ( MetOpen `  P )
5958mopnval 13082 . . 3  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  L  =  ( topGen `  ran  ( ball `  P )
) )
604, 59syl 14 . 2  |-  ( ph  ->  L  =  ( topGen ` 
ran  ( ball `  P
) ) )
61 eqid 2165 . . . 4  |-  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  =  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )
6261txval 12895 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6310, 13, 62syl2anc 409 . 2  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6457, 60, 633sstr4d 3187 1  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726    C_ wss 3116   {cpr 3577    X. cxp 4602   ran crn 4605   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   1stc1st 6106   2ndc2nd 6107   supcsup 6947   RR*cxr 7932    < clt 7933   topGenctg 12571   *Metcxmet 12620   ballcbl 12622   MetOpencmopn 12625   Topctop 12635    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-tx 12893
This theorem is referenced by:  xmettx  13150
  Copyright terms: Public domain W3C validator