ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettxlem Unicode version

Theorem xmettxlem 14486
Description: Lemma for xmettx 14487. (Contributed by Jim Kingdon, 15-Oct-2023.)
Hypotheses
Ref Expression
xmetxp.p  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
xmetxp.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xmetxp.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xmettx.j  |-  J  =  ( MetOpen `  M )
xmettx.k  |-  K  =  ( MetOpen `  N )
xmettx.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
xmettxlem  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Distinct variable groups:    u, M, v   
u, N, v    u, X, v    u, Y, v
Allowed substitution hints:    ph( v, u)    P( v, u)    J( v, u)    K( v, u)    L( v, u)

Proof of Theorem xmettxlem
Dummy variables  p  r  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetxp.p . . . . . . . . 9  |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y ) 
|->  sup ( { ( ( 1st `  u
) M ( 1st `  v ) ) ,  ( ( 2nd `  u
) N ( 2nd `  v ) ) } ,  RR* ,  <  )
)
2 xmetxp.1 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( *Met `  X ) )
3 xmetxp.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
41, 2, 3xmetxp 14484 . . . . . . . 8  |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
5 blrn 14389 . . . . . . . 8  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  (
w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) ) )
64, 5syl 14 . . . . . . 7  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  <->  E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p ) ) )
76biimpa 296 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  E. z  e.  ( X  X.  Y
) E. p  e. 
RR*  w  =  ( z ( ball `  P
) p ) )
8 xmettx.j . . . . . . . . . . . . . . 15  |-  J  =  ( MetOpen `  M )
98mopntop 14421 . . . . . . . . . . . . . 14  |-  ( M  e.  ( *Met `  X )  ->  J  e.  Top )
102, 9syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
11 xmettx.k . . . . . . . . . . . . . . 15  |-  K  =  ( MetOpen `  N )
1211mopntop 14421 . . . . . . . . . . . . . 14  |-  ( N  e.  ( *Met `  Y )  ->  K  e.  Top )
133, 12syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Top )
14 mpoexga 6238 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1510, 13, 14syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
16 rnexg 4910 . . . . . . . . . . . 12  |-  ( ( r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
1715, 16syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  e. 
_V )
1817ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )
19 bastg 14038 . . . . . . . . . 10  |-  ( ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
2018, 19syl 14 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
212ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  M  e.  ( *Met `  X ) )
22 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
z  e.  ( X  X.  Y ) )
23 xp1st 6191 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
2422, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 1st `  z
)  e.  X )
25 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  p  e.  RR* )
268blopn 14467 . . . . . . . . . . . 12  |-  ( ( M  e.  ( *Met `  X )  /\  ( 1st `  z
)  e.  X  /\  p  e.  RR* )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
2721, 24, 25, 26syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 1st `  z
) ( ball `  M
) p )  e.  J )
283ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  N  e.  ( *Met `  Y ) )
29 xp2nd 6192 . . . . . . . . . . . . 13  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
3022, 29syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( 2nd `  z
)  e.  Y )
3111blopn 14467 . . . . . . . . . . . 12  |-  ( ( N  e.  ( *Met `  Y )  /\  ( 2nd `  z
)  e.  Y  /\  p  e.  RR* )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
3228, 30, 25, 31syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( ( 2nd `  z
) ( ball `  N
) p )  e.  K )
33 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( z
( ball `  P )
p ) )
341, 21, 28, 25, 22xmetxpbl 14485 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  -> 
( z ( ball `  P ) p )  =  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3533, 34eqtrd 2222 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  =  ( (
( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
36 xpeq1 4658 . . . . . . . . . . . . 13  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( r  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  s ) )
3736eqeq2d 2201 . . . . . . . . . . . 12  |-  ( r  =  ( ( 1st `  z ) ( ball `  M ) p )  ->  ( w  =  ( r  X.  s
)  <->  w  =  (
( ( 1st `  z
) ( ball `  M
) p )  X.  s ) ) )
38 xpeq2 4659 . . . . . . . . . . . . 13  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( ( ( 1st `  z ) ( ball `  M
) p )  X.  s )  =  ( ( ( 1st `  z
) ( ball `  M
) p )  X.  ( ( 2nd `  z
) ( ball `  N
) p ) ) )
3938eqeq2d 2201 . . . . . . . . . . . 12  |-  ( s  =  ( ( 2nd `  z ) ( ball `  N ) p )  ->  ( w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  s )  <->  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) ) )
4037, 39rspc2ev 2871 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  z
) ( ball `  M
) p )  e.  J  /\  ( ( 2nd `  z ) ( ball `  N
) p )  e.  K  /\  w  =  ( ( ( 1st `  z ) ( ball `  M ) p )  X.  ( ( 2nd `  z ) ( ball `  N ) p ) ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s
) )
4127, 32, 35, 40syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
42 eqid 2189 . . . . . . . . . . . 12  |-  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  =  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )
4342elrnmpog 6010 . . . . . . . . . . 11  |-  ( w  e.  _V  ->  (
w  e.  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) ) )
4443elv 2756 . . . . . . . . . 10  |-  ( w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) )  <->  E. r  e.  J  E. s  e.  K  w  =  ( r  X.  s ) )
4541, 44sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )
4620, 45sseldd 3171 . . . . . . . 8  |-  ( ( ( ( ph  /\  w  e.  ran  ( ball `  P ) )  /\  ( z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  /\  w  =  ( z (
ball `  P )
p ) )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
4746ex 115 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ran  ( ball `  P
) )  /\  (
z  e.  ( X  X.  Y )  /\  p  e.  RR* ) )  ->  ( w  =  ( z ( ball `  P ) p )  ->  w  e.  (
topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
4847rexlimdvva 2615 . . . . . 6  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  ( E. z  e.  ( X  X.  Y ) E. p  e.  RR*  w  =  ( z (
ball `  P )
p )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
497, 48mpd 13 . . . . 5  |-  ( (
ph  /\  w  e.  ran  ( ball `  P
) )  ->  w  e.  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
5049ex 115 . . . 4  |-  ( ph  ->  ( w  e.  ran  ( ball `  P )  ->  w  e.  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5150ssrdv 3176 . . 3  |-  ( ph  ->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
52 blex 14364 . . . . 5  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  ( ball `  P )  e. 
_V )
53 rnexg 4910 . . . . 5  |-  ( (
ball `  P )  e.  _V  ->  ran  ( ball `  P )  e.  _V )
544, 52, 533syl 17 . . . 4  |-  ( ph  ->  ran  ( ball `  P
)  e.  _V )
55 tgss3 14055 . . . 4  |-  ( ( ran  ( ball `  P
)  e.  _V  /\  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s
) )  e.  _V )  ->  ( ( topGen ` 
ran  ( ball `  P
) )  C_  ( topGen `
 ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5654, 17, 55syl2anc 411 . . 3  |-  ( ph  ->  ( ( topGen `  ran  ( ball `  P )
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) )  <->  ran  ( ball `  P
)  C_  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) ) )
5751, 56mpbird 167 . 2  |-  ( ph  ->  ( topGen `  ran  ( ball `  P ) )  C_  ( topGen `  ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
58 xmettx.l . . . 4  |-  L  =  ( MetOpen `  P )
5958mopnval 14419 . . 3  |-  ( P  e.  ( *Met `  ( X  X.  Y
) )  ->  L  =  ( topGen `  ran  ( ball `  P )
) )
604, 59syl 14 . 2  |-  ( ph  ->  L  =  ( topGen ` 
ran  ( ball `  P
) ) )
61 eqid 2189 . . . 4  |-  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )  =  ran  (
r  e.  J , 
s  e.  K  |->  ( r  X.  s ) )
6261txval 14232 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6310, 13, 62syl2anc 411 . 2  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( r  e.  J ,  s  e.  K  |->  ( r  X.  s ) ) ) )
6457, 60, 633sstr4d 3215 1  |-  ( ph  ->  L  C_  ( J  tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   E.wrex 2469   _Vcvv 2752    C_ wss 3144   {cpr 3608    X. cxp 4642   ran crn 4645   ` cfv 5235  (class class class)co 5897    e. cmpo 5899   1stc1st 6164   2ndc2nd 6165   supcsup 7012   RR*cxr 8022    < clt 8023   topGenctg 12762   *Metcxmet 13866   ballcbl 13868   MetOpencmopn 13871   Topctop 13974    tX ctx 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-map 6677  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-tx 14230
This theorem is referenced by:  xmettx  14487
  Copyright terms: Public domain W3C validator