| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmettxlem | Unicode version | ||
| Description: Lemma for xmettx 15097. (Contributed by Jim Kingdon, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| xmetxp.p |
|
| xmetxp.1 |
|
| xmetxp.2 |
|
| xmettx.j |
|
| xmettx.k |
|
| xmettx.l |
|
| Ref | Expression |
|---|---|
| xmettxlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetxp.p |
. . . . . . . . 9
| |
| 2 | xmetxp.1 |
. . . . . . . . 9
| |
| 3 | xmetxp.2 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | xmetxp 15094 |
. . . . . . . 8
|
| 5 | blrn 14999 |
. . . . . . . 8
| |
| 6 | 4, 5 | syl 14 |
. . . . . . 7
|
| 7 | 6 | biimpa 296 |
. . . . . 6
|
| 8 | xmettx.j |
. . . . . . . . . . . . . . 15
| |
| 9 | 8 | mopntop 15031 |
. . . . . . . . . . . . . 14
|
| 10 | 2, 9 | syl 14 |
. . . . . . . . . . . . 13
|
| 11 | xmettx.k |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | mopntop 15031 |
. . . . . . . . . . . . . 14
|
| 13 | 3, 12 | syl 14 |
. . . . . . . . . . . . 13
|
| 14 | mpoexga 6321 |
. . . . . . . . . . . . 13
| |
| 15 | 10, 13, 14 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 16 | rnexg 4962 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . 11
|
| 18 | 17 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 19 | bastg 14648 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
|
| 21 | 2 | ad3antrrr 492 |
. . . . . . . . . . . 12
|
| 22 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 23 | xp1st 6274 |
. . . . . . . . . . . . 13
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . . . 12
|
| 25 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 26 | 8 | blopn 15077 |
. . . . . . . . . . . 12
|
| 27 | 21, 24, 25, 26 | syl3anc 1250 |
. . . . . . . . . . 11
|
| 28 | 3 | ad3antrrr 492 |
. . . . . . . . . . . 12
|
| 29 | xp2nd 6275 |
. . . . . . . . . . . . 13
| |
| 30 | 22, 29 | syl 14 |
. . . . . . . . . . . 12
|
| 31 | 11 | blopn 15077 |
. . . . . . . . . . . 12
|
| 32 | 28, 30, 25, 31 | syl3anc 1250 |
. . . . . . . . . . 11
|
| 33 | simpr 110 |
. . . . . . . . . . . 12
| |
| 34 | 1, 21, 28, 25, 22 | xmetxpbl 15095 |
. . . . . . . . . . . 12
|
| 35 | 33, 34 | eqtrd 2240 |
. . . . . . . . . . 11
|
| 36 | xpeq1 4707 |
. . . . . . . . . . . . 13
| |
| 37 | 36 | eqeq2d 2219 |
. . . . . . . . . . . 12
|
| 38 | xpeq2 4708 |
. . . . . . . . . . . . 13
| |
| 39 | 38 | eqeq2d 2219 |
. . . . . . . . . . . 12
|
| 40 | 37, 39 | rspc2ev 2899 |
. . . . . . . . . . 11
|
| 41 | 27, 32, 35, 40 | syl3anc 1250 |
. . . . . . . . . 10
|
| 42 | eqid 2207 |
. . . . . . . . . . . 12
| |
| 43 | 42 | elrnmpog 6081 |
. . . . . . . . . . 11
|
| 44 | 43 | elv 2780 |
. . . . . . . . . 10
|
| 45 | 41, 44 | sylibr 134 |
. . . . . . . . 9
|
| 46 | 20, 45 | sseldd 3202 |
. . . . . . . 8
|
| 47 | 46 | ex 115 |
. . . . . . 7
|
| 48 | 47 | rexlimdvva 2633 |
. . . . . 6
|
| 49 | 7, 48 | mpd 13 |
. . . . 5
|
| 50 | 49 | ex 115 |
. . . 4
|
| 51 | 50 | ssrdv 3207 |
. . 3
|
| 52 | blex 14974 |
. . . . 5
| |
| 53 | rnexg 4962 |
. . . . 5
| |
| 54 | 4, 52, 53 | 3syl 17 |
. . . 4
|
| 55 | tgss3 14665 |
. . . 4
| |
| 56 | 54, 17, 55 | syl2anc 411 |
. . 3
|
| 57 | 51, 56 | mpbird 167 |
. 2
|
| 58 | xmettx.l |
. . . 4
| |
| 59 | 58 | mopnval 15029 |
. . 3
|
| 60 | 4, 59 | syl 14 |
. 2
|
| 61 | eqid 2207 |
. . . 4
| |
| 62 | 61 | txval 14842 |
. . 3
|
| 63 | 10, 13, 62 | syl2anc 411 |
. 2
|
| 64 | 57, 60, 63 | 3sstr4d 3246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-tx 14840 |
| This theorem is referenced by: xmettx 15097 |
| Copyright terms: Public domain | W3C validator |