Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzoss2 | Unicode version |
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzoss2 | ..^ ..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9492 | . . . . 5 | |
2 | peano2zm 9250 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | 1zzd 9239 | . . . 4 | |
5 | id 19 | . . . . 5 | |
6 | 1 | zcnd 9335 | . . . . . . 7 |
7 | ax-1cn 7867 | . . . . . . 7 | |
8 | npcan 8128 | . . . . . . 7 | |
9 | 6, 7, 8 | sylancl 411 | . . . . . 6 |
10 | 9 | fveq2d 5500 | . . . . 5 |
11 | 5, 10 | eleqtrrd 2250 | . . . 4 |
12 | eluzsub 9516 | . . . 4 | |
13 | 3, 4, 11, 12 | syl3anc 1233 | . . 3 |
14 | fzss2 10020 | . . 3 | |
15 | 13, 14 | syl 14 | . 2 |
16 | fzoval 10104 | . . 3 ..^ | |
17 | 1, 16 | syl 14 | . 2 ..^ |
18 | eluzelz 9496 | . . 3 | |
19 | fzoval 10104 | . . 3 ..^ | |
20 | 18, 19 | syl 14 | . 2 ..^ |
21 | 15, 17, 20 | 3sstr4d 3192 | 1 ..^ ..^ |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wss 3121 cfv 5198 (class class class)co 5853 cc 7772 c1 7775 caddc 7777 cmin 8090 cz 9212 cuz 9487 cfz 9965 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: fzossrbm1 10129 fzosplit 10133 fzossfzop1 10168 |
Copyright terms: Public domain | W3C validator |